skip to main content


Title: Microtubules form by progressively faster tubulin accretion, not by nucleation–elongation

Microtubules are dynamic polymers that play fundamental roles in all eukaryotes. Despite their importance, how new microtubules form is poorly understood. Textbooks have focused on variations of a nucleation–elongation mechanism in which monomers rapidly equilibrate with an unstable oligomer (nucleus) that limits the rate of polymer formation; once formed, the polymer then elongates efficiently from this nucleus by monomer addition. Such models faithfully describe actin assembly, but they fail to account for how more complex polymers like hollow microtubules assemble. Here, we articulate a new model for microtubule formation that has three key features: (1) microtubules initiate via rectangular, sheet-like structures that grow faster the larger they become; (2) the dominant pathway proceeds via accretion, the stepwise addition of longitudinal or lateral layers; and (3) a “straightening penalty” to account for the energetic cost of tubulin’s curved-to-straight conformational transition. This model can quantitatively fit experimental assembly data, providing new insights into biochemical determinants and assembly pathways for microtubule nucleation.

 
more » « less
Award ID(s):
2017687 1615938 1054947
NSF-PAR ID:
10217858
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.1083
Date Published:
Journal Name:
Journal of Cell Biology
Volume:
220
Issue:
5
ISSN:
0021-9525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    αβ‐tubulin subunits cycle through a series of different conformations in the polymer lattice during microtubule growing and shrinking. How these allosteric responses to different tubulin:tubulin contacts contribute to microtubule dynamics, and whether the contributions are evolutionarily conserved, remains poorly understood. Here, we sought to determine whether the microtubule‐stabilizing effects (slower shrinking) of the β:T238A mutation we previously observed using yeast αβ‐tubulin would generalize to mammalian microtubules. Using recombinant human microtubules as a model, we found that the mutation caused slow microtubule shrinking, indicating that this effect of the mutation is indeed conserved. However, unlike in yeast, β:T238A human microtubules grew faster than wild‐type and the mutation did not appear to attenuate the conformational change associated with guanosine 5′‐triphosphate (GTP) hydrolysis in the lattice. We conclude that the assembly‐dependent conformational change in αβ‐tubulin can contribute to determine the rates of microtubule growing as well as shrinking. Our results also suggest that an allosteric perturbation like the β:T238A mutation can alter the behavior of terminal subunits without accompanying changes in the conformation of fully surrounded subunits in the body of the microtubule.

     
    more » « less
  2. Summary

    Cytoskeletal microtubules (MTs) have a multitude of functions including intracellular distribution of molecules and organelles, cell morphogenesis, as well as segregation of the genetic material and separation of the cytoplasm during cell division among eukaryotic organisms. In response to internal and external cues, eukaryotic cells remodel theirMTnetwork in a regulated manner in order to assemble physiologically important arrays for cell growth, cell proliferation, or for cells to cope with biotic or abiotic stresses. Nucleation of newMTs is a critical step forMTremodeling. Although many key factors contributing toMTnucleation and organization are well conserved in different kingdoms, the centrosome, representing the most prominent microtubule organizing centers (MTOCs), disappeared during plant evolution as angiosperms lack the structure. Instead, flexibleMTOCs may emerge on the plasma membrane, the nuclear envelope, and even organelles depending on types of cells and organisms and/or physiological conditions.MT‐dependentMTnucleation is particularly noticeable in plant cells because it accounts for the primary source ofMTgeneration for assembling spindle, phragmoplast, and cortical arrays when the γ‐tubulin ring complex is anchored and activated by the augmin complex. It is intriguing what proteins are associated with plant‐specificMTOCs and how plant cells activate or inactivateMTnucleation activities in spatiotemporally regulated manners.

     
    more » « less
  3. Abstract

    Microtubules are dynamic tubulin polymers responsible for many cellular processes, including the capture and segregation of chromosomes during mitosis. In contrast to textbook models of tubulin self-assembly, we have recently demonstrated that microtubules elongate by addition of bent guanosine triphosphate tubulin to the tips of curving protofilaments. Here we explore this mechanism of microtubule growth using Brownian dynamics modeling and electron cryotomography. The previously described flaring shapes of growing microtubule tips are remarkably consistent under various assembly conditions, including different tubulin concentrations, the presence or absence of a polymerization catalyst or tubulin-binding drugs. Simulations indicate that development of substantial forces during microtubule growth and shortening requires a high activation energy barrier in lateral tubulin-tubulin interactions. Modeling offers a mechanism to explain kinetochore coupling to growing microtubule tips under assisting force, and it predicts a load-dependent acceleration of microtubule assembly, providing a role for the flared morphology of growing microtubule ends.

     
    more » « less
  4. Summary

    Pits are regions in the cell walls of plant tracheary elements that lack secondary walls. Each pit consists of a space within the secondary wall called a pit chamber, and a modified primary wall called the pit membrane. The pit membrane facilitates transport of solutions between vessel cells and restricts embolisms during drought. Here we analyzed the role of an angiosperm‐specific TPX2‐like microtubule protein MAP20 in pit formation usingBrachypodium distachyonas a model system.

    Live cell imaging was used to analyze the interaction of MAP20 with microtubules and the impact of MAP20 on microtubule dynamics. MAP20‐specific antibody was used to study expression and localization of MAP20 in different cell types during vascular bundle development. We used an artificial microRNAs (amiRNA) knockdown approach to determine the function ofMAP20.

    MAP20 is expressed during the late stages of vascular bundle development and localizes around forming pits and under secondary cell wall thickenings in metaxylem cells. MAP20 suppresses microtubule depolymerization; however, unlike the animal TPX2 counterpart, MAP20 does not cooperate with the γ‐tubulin ring complex in microtubule nucleation. Knockdown ofMAP20causes bigger pits, thinner pit membranes, perturbed vasculature development, lower reproductive potential and higher drought susceptibility.

    We conclude thatMAP20may contribute to drought adaptation by modulating pit size and pit membrane thickness in metaxylem.

     
    more » « less
  5. Théry, Manuel (Ed.)
    How temperature specifically affects microtubule dynamics and how these lead to changes in microtubule networks in cells have not been established. We investigated these questions in budding yeast, an organism found in diverse environments and therefore predicted to exhibit dynamic microtubules across a broad temperature range. We measured the dynamics of GFP-labeled microtubules in living cells and found that lowering temperature from 37°C to 10°C decreased the rates of both polymerization and depolymerization, decreased the amount of polymer assembled before catastrophes, and decreased the frequency of microtubule emergence from nucleation sites. Lowering to 4°C caused rapid loss of almost all microtubule polymer. We provide evidence that these effects on microtubule dynamics may be explained in part by changes in the cofactor-dependent conformational dynamics of tubulin proteins. Ablation of tubulin-binding cofactors (TBCs) further sensitizes cells and their microtubules to low temperatures, and we highlight a specific role for TBCB/Alf1 in microtubule maintenance at low temperatures. Finally, we show that inhibiting the maturation cycle of tubulin by using a point mutant in β-tubulin confers hyperstable microtubules at low temperatures and rescues the requirement for TBCB/Alf1 in maintaining microtubule polymer at low temperatures. Together, these results reveal an unappreciated step in the tubulin cycle. 
    more » « less