skip to main content


Title: FlatNet: Towards Photorealistic Scene Reconstruction from Lensless Measurements
Lensless imaging has emerged as a potential solution towards realizing ultra-miniature cameras by eschewing the bulky lens in a traditional camera. Without a focusing lens, the lensless cameras rely on computational algorithms to recover the scenes from multiplexed measurements. However, the current iterative-optimization-based reconstruction algorithms produce noisier and perceptually poorer images. In this work, we propose a non-iterative deep learning-based reconstruction approach that results in orders of magnitude improvement in image quality for lensless reconstructions. Our approach, called FlatNet, lays down a framework for reconstructing high-quality photorealistic images from mask-based lensless cameras, where the camera's forward model formulation is known. FlatNet consists of two stages: (1) an inversion stage that maps the measurement into a space of intermediate reconstruction by learning parameters within the forward model formulation, and (2) a perceptual enhancement stage that improves the perceptual quality of this intermediate reconstruction. These stages are trained together in an end-to-end manner. We show high-quality reconstructions by performing extensive experiments on real and challenging scenes using two different types of lensless prototypes: one which uses a separable forward model and another, which uses a more general non-separable cropped-convolution model. Our end-to-end approach is fast, produces photorealistic reconstructions, and is easy to adopt for other mask-based lensless cameras.  more » « less
Award ID(s):
1652633 1730574
NSF-PAR ID:
10217884
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN:
0162-8828
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lensless cameras are ultra-thin imaging systems that replace the lens with a thin passive optical mask and computation. Passive mask-based lensless cameras encode depth information in their measurements for a certain depth range. Early works have shown that this encoded depth can be used to perform 3D reconstruction of close-range scenes. However, these approaches for 3D reconstructions are typically optimization based and require strong hand-crafted priors and hundreds of iterations to reconstruct. Moreover, the reconstructions suffer from low resolution, noise, and artifacts. In this work, we proposeFlatNet3D—a feed-forward deep network that can estimate both depth and intensity from a single lensless capture. FlatNet3D is an end-to-end trainable deep network that directly reconstructs depth and intensity from a lensless measurement using an efficient physics-based 3D mapping stage and a fully convolutional network. Our algorithm is fast and produces high-quality results, which we validate using both simulated and real scenes captured using PhlatCam.

     
    more » « less
  2. ABSTRACT

    We introduce a new class of iterative image reconstruction algorithms for radio interferometry, at the interface of convex optimization and deep learning, inspired by plug-and-play methods. The approach consists in learning a prior image model by training a deep neural network (DNN) as a denoiser, and substituting it for the handcrafted proximal regularization operator of an optimization algorithm. The proposed AIRI (‘AI for Regularization in radio-interferometric Imaging’) framework, for imaging complex intensity structure with diffuse and faint emission from visibility data, inherits the robustness and interpretability of optimization, and the learning power and speed of networks. Our approach relies on three steps. First, we design a low dynamic range training data base from optical intensity images. Secondly, we train a DNN denoiser at a noise level inferred from the signal-to-noise ratio of the data. We use training losses enhanced with a non-expansiveness term ensuring algorithm convergence, and including on-the-fly data base dynamic range enhancement via exponentiation. Thirdly, we plug the learned denoiser into the forward–backward optimization algorithm, resulting in a simple iterative structure alternating a denoising step with a gradient-descent data-fidelity step. We have validated AIRI against clean, optimization algorithms of the SARA family, and a DNN trained to reconstruct the image directly from visibility data. Simulation results show that AIRI is competitive in imaging quality with SARA and its unconstrained forward–backward-based version uSARA, while providing significant acceleration. clean remains faster but offers lower quality. The end-to-end DNN offers further acceleration, but with far lower quality than AIRI.

     
    more » « less
  3. Abstract Purpose

    The constrained one‐step spectral CT image reconstruction (cOSSCIR) algorithm with a nonconvex alternating direction method of multipliers optimizer is proposed for addressing computed tomography (CT) metal artifacts caused by beam hardening, noise, and photon starvation. The quantitative performance of cOSSCIR is investigated through a series of photon‐counting CT simulations.

    Methods

    cOSSCIR directly estimates basis material maps from photon‐counting data using a physics‐based forward model that accounts for beam hardening. The cOSSCIR optimization framework places constraints on the basis maps, which we hypothesize will stabilize the decomposition and reduce streaks caused by noise and photon starvation. Another advantage of cOSSCIR is that the spectral data need not be registered, so that a ray can be used even if some energy window measurements are unavailable. Photon‐counting CT acquisitions of a virtual pelvic phantom with low‐contrast soft tissue texture and bilateral hip prostheses were simulated. Bone and water basis maps were estimated using the cOSSCIR algorithm and combined to form a virtual monoenergetic image for the evaluation of metal artifacts. The cOSSCIR images were compared to a “two‐step” decomposition approach that first estimated basis sinograms using a maximum likelihood algorithm and then reconstructed basis maps using an iterative total variation constrained least‐squares optimization (MLE+TV). Images were also compared to a nonspectral TV reconstruction of the total number of counts detected for each ray with and without normalized metal artifact reduction (NMAR) applied. The simulated metal density was increased to investigate the effects of increasing photon starvation. The quantitative error and standard deviation in regions of the phantom were compared across the investigated algorithms. The ability of cOSSCIR to reproduce the soft‐tissue texture, while reducing metal artifacts, was quantitatively evaluated.

    Results

    Noiseless simulations demonstrated the convergence of the cOSSCIR and MLE+TV algorithms to the correct basis maps in the presence of beam‐hardening effects. When noise was simulated, cOSSCIR demonstrated a quantitative error of −1 HU, compared to 2 HU error for the MLE+TV algorithm and −154 HU error for the nonspectral TV+NMAR algorithm. For the cOSSCIR algorithm, the standard deviation in the central iodine region of interest was 20 HU, compared to 299 HU for the MLE+TV algorithm, 41 HU for the MLE+TV+Mask algorithm that excluded rays through metal, and 55 HU for the nonspectral TV+NMAR algorithm. Increasing levels of photon starvation did not impact the bias or standard deviation of the cOSSCIR images. cOSSCIR was able to reproduce the soft‐tissue texture when an appropriate regularization constraint value was selected.

    Conclusions

    By directly inverting photon‐counting CT data into basis maps using an accurate physics‐based forward model and a constrained optimization algorithm, cOSSCIR avoids metal artifacts due to beam hardening, noise, and photon starvation. The cOSSCIR algorithm demonstrated improved stability and accuracy compared to a two‐step method of decomposition followed by reconstruction.

     
    more » « less
  4. Deconvolution can be used to obtain sharp images or volumes from blurry or encoded measurements in imaging systems. Given knowledge of the system’s point spread function (PSF) over the field of view, a reconstruction algorithm can be used to recover a clear image or volume. Most deconvolution algorithms assume shift-invariance; however, in realistic systems, the PSF varies laterally and axially across the field of view due to aberrations or design. Shift-varying models can be used, but are often slow and computationally intensive. In this work, we propose a deep-learning-based approach that leverages knowledge about the system’s spatially varying PSFs for fast 2D and 3D reconstructions. Our approach, termed MultiWienerNet, uses multiple differentiable Wiener filters paired with a convolutional neural network to incorporate spatial variance. Trained using simulated data and tested on experimental data, our approach offers a625−<#comment/>1600×<#comment/>increase in speed compared to iterative methods with a spatially varying model, and outperforms existing deep-learning-based methods that assume shift invariance.

     
    more » « less
  5. Ultra-miniaturized microendoscopes are vital for numerous biomedical applications. Such minimally invasive imagers allow for navigation into hard-to-reach regions and observation of deep brain activity in freely moving animals. Conventional solutions use distal microlenses. However, as lenses become smaller and less invasive, they develop greater aberrations and restricted fields of view. In addition, most of the imagers capable of variable focusing require mechanical actuation of the lens, increasing the distal complexity and weight. Here, we demonstrate a distal lens-free approach to microendoscopy enabled by computational image recovery. Our approach is entirely actuation free and uses a single pseudorandom spatial mask at the distal end of a multicore fiber. Experimentally, this lensless approach increases the space-bandwidth product, i.e., field of view divided by resolution, by threefold over a best-case lens- based system. In addition, the microendoscope demonstrates color resolved imaging and refocusing to 11 distinct depth planes from a single camera frame without any actuated parts. 
    more » « less