skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Meta-Analysis of the Impact of Skin Type and Gender on Non-contact Photoplethysmography Measurements
It is well established that many datasets used for computer vision tasks are not representative and may be biased. The result of this is that evaluation metrics may not reflect real-world performance and might expose some groups (often minorities) to greater risks than others. Imaging photoplethysmography is a set of techniques that enables noncontact measurement of vital signs using imaging devices. While these methods hold great promise for low-cost and scalable physiological monitoring, it is important that performance is characterized accurately over diverse populations. We perform a meta-analysis across three datasets, including 73 people and over 400 videos featuring a broad range of skin types to study how skin types and gender affect the measurements. While heart rate measurement can be performed on all skin types under certain conditions, we find that average performance drops significantly for the darkest skin type. We also observe a slight drop in the performance for females. We compare supervised and unsupervised learning algorithms and find that skin type does not impact all methods equally. The imaging photoplethysmography community should devote greater efforts to addressing these disparities and collecting representative datasets.  more » « less
Award ID(s):
1652633 1801372
PAR ID:
10217885
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
A Meta-Analysis of the Impact of Skin Type and Gender on Non-contact Photoplethysmography Measurements
Page Range / eLocation ID:
1148 to 1155
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Deep learning approaches currently achieve the state-of-the-art results on camera-based vital signs measurement. One of the main challenges with using neural models for these applications is the lack of sufficiently large and diverse datasets. Limited data increases the chances of overfitting models to the available data which in turn can harm generalization. In this paper, we show that the generalizability of imaging photoplethysmography models can be improved by augmenting the training set with "magnified" videos. These augmentations are specifically designed to reveal useful features for recovering the photoplethysmogram. We show that using augmentations of this form is more effective at improving model robustness than other commonly used data augmentation approaches. We show better within-dataset and especially cross-dataset performance with our proposed data augmentation approach on three publicly available datasets. 
    more » « less
  2. Abstract Single-cell RNA sequencing (scRNA-Seq) is a recent technology that allows for the measurement of the expression of all genes in each individual cell contained in a sample. Information at the single-cell level has been shown to be extremely useful in many areas. However, performing single-cell experiments is expensive. Although cellular deconvolution cannot provide the same comprehensive information as single-cell experiments, it can extract cell-type information from bulk RNA data, and therefore it allows researchers to conduct studies at cell-type resolution from existing bulk datasets. For these reasons, a great effort has been made to develop such methods for cellular deconvolution. The large number of methods available, the requirement of coding skills, inadequate documentation, and lack of performance assessment all make it extremely difficult for life scientists to choose a suitable method for their experiment. This paper aims to fill this gap by providing a comprehensive review of 53 deconvolution methods regarding their methodology, applications, performance, and outstanding challenges. More importantly, the article presents a benchmarking of all these 53 methods using 283 cell types from 30 tissues of 63 individuals. We also provide an R package named DeconBenchmark that allows readers to execute and benchmark the reviewed methods (https://github.com/tinnlab/DeconBenchmark). 
    more » « less
  3. null (Ed.)
    Multi-type recurrent events are often encountered in medical applications when two or more different event types could repeatedly occur over an observation period. For example, patients may experience recurrences of multi-type nonmelanoma skin cancers in a clinical trial for skin cancer prevention. The aims in those applications are to characterize features of the marginal processes, evaluate covariate effects, and quantify both the within-subject recurrence dependence and the dependence among different event types. We use copula-frailty models to analyze correlated recurrent events of different types. Parameter estimation and inference are carried out by using a Monte Carlo expectation-maximization (MCEM) algorithm, which can handle a relatively large (i.e. three or more) number of event types. Performances of the proposed methods are evaluated via extensive simulation studies. The developed methods are used to model the recurrences of skin cancer with different types. 
    more » « less
  4. Data collection often involves the partial measurement of a larger system. A common example arises in collecting network data: we often obtain network datasets by recording all of the interactions among a small set of core nodes, so that we end up with a measurement of the network consisting of these core nodes along with a potentially much larger set of fringe nodes that have links to the core. Given the ubiquity of this process for assembling network data, it is crucial to understand the role of such a “core-fringe” structure. Here we study how the inclusion of fringe nodes affects the standard task of network link prediction. One might initially think the inclusion of any additional data is useful, and hence that it should be beneficial to include all fringe nodes that are available. However, we find that this is not true; in fact, there is substantial variability in the value of the fringe nodes for prediction. Once an algorithm is selected, in some datasets, including any additional data from the fringe can actually hurt prediction performance; in other datasets, including some amount of fringe information is useful before prediction performance saturates or even declines; and in further cases, including the entire fringe leads to the best performance. While such variety might seem surprising, we show that these behaviors are exhibited by simple random graph models. 
    more » « less
  5. Recommender Systems ( RecSys ) provide suggestions in many decision-making processes. Given that groups of people can perform many real-world activities (e.g., a group of people attending a conference looking for a place to dine), the need for recommendations for groups has increased. A wide range of Group Recommender Systems ( GRecSys ) has been developed to aggregate individual preferences to group preferences. We analyze 175 studies related to GRecSys . Previous works evaluate their systems using different types of groups (sizes and cohesiveness), and most of such works focus on testing their systems using only one type of item, called Experience Goods (EG). As a consequence, it is hard to get consistent conclusions about the performance of GRecSys . We present the aggregation strategies and aggregation functions that GRecSys commonly use to aggregate group members’ preferences. This study experimentally compares the performance (i.e., accuracy, ranking quality, and usefulness) using four metrics (Hit Ratio, Normalize Discounted Cumulative Gain, Diversity, and Coverage) of eight representative RecSys for group recommendations on ephemeral groups. Moreover, we use two different aggregation strategies, 10 different aggregation functions, and two different types of items on two types of datasets (EG and Search Goods (SG)) containing real-life datasets. The results show that the evaluation of GRecSys needs to use both EG and SG types of data, because the different characteristics of datasets lead to different performance. GRecSys using Singular Value Decomposition or Neural Collaborative Filtering methods work better than others. It is observed that the Average aggregation function is the one that produces better results. 
    more » « less