Data augmentation is a common practice to help generalization in the procedure of deep model training. In the context of physiological time series classification, previous research has primarily focused on label-invariant data augmentation methods. However, another class of augmentation techniques (i.e., Mixup) that emerged in the computer vision field has yet to be fully explored in the time series domain. In this study, we systematically review the mix-based augmentations, including mixup, cutmix, and manifold mixup, on six physio- logical datasets, evaluating their performance across different sensory data and classification tasks. Our results demonstrate that the three mix-based augmentations can consistently improve the performance on the six datasets. More importantly, the improvement does not rely on expert knowledge or extensive parameter tuning. Lastly, we provide an overview of the unique properties of the mix-based augmentation methods and highlight the potential benefits of using the mix-based augmentation in physiological time series data. Our code and results are available at https://github.com/comp-well-org/ Mix-Augmentation-for-Physiological-Time-Series-Classification.
more »
« less
Combining Magnification and Measurement for Non-Contact Cardiac Monitoring
Deep learning approaches currently achieve the state-of-the-art results on camera-based vital signs measurement. One of the main challenges with using neural models for these applications is the lack of sufficiently large and diverse datasets. Limited data increases the chances of overfitting models to the available data which in turn can harm generalization. In this paper, we show that the generalizability of imaging photoplethysmography models can be improved by augmenting the training set with "magnified" videos. These augmentations are specifically designed to reveal useful features for recovering the photoplethysmogram. We show that using augmentations of this form is more effective at improving model robustness than other commonly used data augmentation approaches. We show better within-dataset and especially cross-dataset performance with our proposed data augmentation approach on three publicly available datasets.
more »
« less
- Award ID(s):
- 1801372
- PAR ID:
- 10301741
- Date Published:
- Journal Name:
- Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021
- Page Range / eLocation ID:
- 3805 to 3814
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Deep Convolutional Neural Networks (CNNs) have performed remarkably well in JPEG steganalysis. However, they heavily rely on large datasets to avoid overfitting. Data augmentation is a popular technique to inflate the datasets available without collecting new images. For JPEG steganalysis, the augmentations predominantly used by researchers are limited to rotations and flips (D4 augmentations). This is due to the fact that the stego signal is erased by most augmentations used in computer vision. In this paper, we systematically survey a large number of other augmentation techniques and assess their benefit in JPEG steganalysismore » « less
-
Abstract NLP has achieved great progress in the past decade through the use of neural models and large labeled datasets. The dependence on abundant data prevents NLP models from being applied to low-resource settings or novel tasks where significant time, money, or expertise is required to label massive amounts of textual data. Recently, data augmentation methods have been explored as a means of improving data efficiency in NLP. To date, there has been no systematic empirical overview of data augmentation for NLP in the limited labeled data setting, making it difficult to understand which methods work in which settings. In this paper, we provide an empirical survey of recent progress on data augmentation for NLP in the limited labeled data setting, summarizing the landscape of methods (including token-level augmentations, sentence-level augmentations, adversarial augmentations, and hidden-space augmentations) and carrying out experiments on 11 datasets covering topics/news classification, inference tasks, paraphrasing tasks, and single-sentence tasks. Based on the results, we draw several conclusions to help practitioners choose appropriate augmentations in different settings and discuss the current challenges and future directions for limited data learning in NLP.more » « less
-
Abstract Data augmentation is a powerful tool for improving deep learning‐based image classifiers for plant stress identification and classification. However, selecting an effective set of augmentations from a large pool of candidates remains a key challenge, particularly in imbalanced and confounding datasets. We propose an approach for automated class‐specific data augmentation using a genetic algorithm. We demonstrate the utility of our approach on soybean [Glycine max (L.) Merr] stress classification where symptoms are observed on leaves; a particularly challenging problem due to confounding classes in the dataset. Our approach yields substantial performance, achieving a mean‐per‐class accuracy of 97.61% and an overall accuracy of 98% on the soybean leaf stress dataset. Our method significantly improves the accuracy of the most challenging classes, with notable enhancements from 83.01% to 88.89% and from 85.71% to 94.05%, respectively. A key observation we make in this study is that high‐performing augmentation strategies can be identified in a computationally efficient manner. We fine‐tune only the linear layer of the baseline model with different augmentations, thereby reducing the computational burden associated with training classifiers from scratch for each augmentation policy while achieving exceptional performance. This research represents an advancement in automated data augmentation strategies for plant stress classification, particularly in the context of confounding datasets. Our findings contribute to the growing body of research in tailored augmentation techniques and their potential impact on disease management strategies, crop yields, and global food security. The proposed approach holds the potential to enhance the accuracy and efficiency of deep learning‐based tools for managing plant stresses in agriculture.more » « less
-
Modern techniques like contrastive learning have been effectively used in many areas, including computer vision, natural language processing, and graph-structured data. Creating positive examples that assist the model in learning robust and discriminative representations is a crucial stage in contrastive learning approaches. Usually, preset human intuition directs the selection of relevant data augmentations. Due to patterns that are easily recognized by humans, this rule of thumb works well in the vision and language domains. However, it is impractical to visually inspect the temporal structures in time series. The diversity of time series augmentations at both the dataset and instance levels makes it difficult to choose meaningful augmentations on the fly. In this study, we address this gap by analyzing time series data augmentation using information theory and summarizing the most commonly adopted augmentations in a unified format. We then propose a contrastive learning framework with parametric augmentation, AutoTCL, which can be adaptively employed to support time series representation learning. The proposed approach is encoder-agnostic, allowing it to be seamlessly integrated with different backbone encoders. Experiments on univariate forecasting tasks demonstrate the highly competitive results of our method, with an average 6.5% reduction in MSE and 4.7% in MAE over the leading baselines. In classification tasks, AutoTCL achieves a 1.2% increase in average accuracy.more » « less
An official website of the United States government

