skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CANOPIC: Pre-Digital Privacy-Enhancing Encodings for Computer Vision
The standard pipeline for many vision tasks uses a conventional camera to capture an image that is then passed to a digital processor for information extraction. In some deployments, such as private locations, the captured digital imagery contains sensitive information exposed to digital vulnerabilities such as spyware, Trojans, etc. However, in many applications, the full imagery is unnecessary for the vision task at hand. In this paper we propose an optical and analog system that preprocesses the light from the scene before it reaches the digital imager to destroy sensitive information. We explore analog and optical encodings consisting of easily implementable operations such as convolution, pooling, and quantization. We perform a case study to evaluate how such encodings can destroy face identity information while preserving enough information for face detection. The encoding parameters are learned via an alternating optimization scheme based on adversarial learning with deep neural networks. We name our system CAnOPIC (Camera with Analog and Optical Privacy-Integrating Computations) and show that it has better performance in terms of both privacy and utility than conventional optical privacy-enhancing methods such as blurring and pixelation.  more » « less
Award ID(s):
1652633
PAR ID:
10217888
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
CANOPIC: Pre-Digital Privacy-Enhancing Encodings for Computer Vision
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is an increasing concern in computer vision devices invading the privacy of their users. We want the camera systems/robots to recognize important events and assist human daily life by understanding its videos, but we also want to ensure that they do not intrude people's privacy. In this paper, we propose a new principled approach for learning a video anonymizer. We use an adversarial training setting in which two competing systems fight: (1) a video anonymizer that modifies the original video to remove privacy-sensitive information (i.e., human face) while still trying to maximize spatial action detection performance, and (2) a discriminator that tries to extract privacy-sensitive information from such anonymized videos. The end goal is for the video anonymizer to perform a pixel-level modification of video frames to anonymize each person's face, while minimizing the effect on action detection performance. We experimentally confirm the benefit of our approach particularly compared to conventional hand-crafted video/face anonymization methods including masking, blurring, and noise adding. 
    more » « less
  2. With the rapid proliferation of small unmanned aircraft systems (UAS), the risk of mid-air collisions is growing, as is the risk associated with the malicious use of these systems. Airborne Detect-and-Avoid (ABDAA) and counter-UAS technologies have similar sensing requirements to detect and track airborne threats, albeit for different purposes: to avoid a collision or to neutralize a threat, respectively. These systems typically include a variety of sensors, such as electro-optical or infrared (EO/IR) cameras, RADAR, or LiDAR, and they fuse the data from these sensors to detect and track a given threat and to predict its trajectory. Camera imagery can be an effective method for detection as well as for pose estimation and threat classification, though a single camera cannot resolve range to a threat without additional information, such as knowledge of the threat geometry. To support ABDAA and counter-UAS applications, we consider a merger of two image-based sensing methods that mimic human vision: (1) a "peripheral vision" camera (i.e., with a fisheye lens) to provide a large field-of-view and (2) a "central vision" camera (i.e., with a perspective lens) to provide high resolution imagery of a specific target. Beyond the complementary ability of the two cameras to support detection and classification, the pair form a heterogeneous stereo vision system that can support range resolution. This paper describes the initial development and testing of a peripheral-central vision system to detect, localize, and classify an airborne threat and finally to predict its path using knowledge of the threat class. 
    more » « less
  3. We have developed a low-cost mechanical shutter driver with integrated arbitrary waveform generation for optical switching and control using a programmable system-on-chip device. This microcontroller-based device with configurable digital and analog blocks is readily programmed using free software, allowing for easy customization for a variety of applications. Additional digital and analog outputs with arbitrary timings can be used to control a variety of devices, such as additional shutters, acousto-optical modulators, or camera trigger pulses, for complete control and imaging of laser light. Utilizing logic-level control signals, this device can be readily integrated into existing computer control and data acquisition systems for expanded hardware capabilities. 
    more » « less
  4. Facial recognition technology is becoming increasingly ubiquitous nowadays. Facial recognition systems rely upon large amounts of facial image data. This raises serious privacy concerns since storing this facial data securely is challenging given the constant risk of data breaches or hacking. This paper proposes a privacy-preserving face recognition and verification system that works without compromising the user’s privacy. It utilizes sensor measurements captured by a lensless camera - FlatCam. These sensor measurements are visually unintelligible, preserving the user’s privacy. Our solution works without the knowledge of the camera sensor’s Point Spread Function and does not require image reconstruction at any stage. In order to perform face recognition without information on face images, we propose a Discrete Cosine Transform (DCT) domain sensor measurement learning scheme that can recognize faces without revealing face images. We compute a frequency domain representation by computing the DCT of the sensor measurement at multiple resolutions and then splitting the result into multiple subbands. The network trained using this DCT representation results in huge accuracy gains compared to the accuracy obtained after directly training with sensor measurement. In addition, we further enhance the security of the system by introducing pseudo-random noise at random DCT coefficient locations as a secret key in the proposed DCT representation. It is virtually impossible to recover the face images from the DCT representation without the knowledge of the camera parameters and the noise locations. We evaluated the proposed system on a real lensless camera dataset - the FlatCam Face dataset. Experimental results demonstrate the system is highly secure and can achieve a recognition accuracy of 93.97% while maintaining strong user privacy. 
    more » « less
  5. Abstract Magnetic straintronics made its debut more than a decade ago as an extremely energy-efficient paradigm for implementing a digital switch for digital information processing. The switch consists of a slightly elliptical nano-sized magnetostrictive disk in elastic contact with a poled ultrathin piezoelectric layer (forming a two-phase multiferroic system). Because of the elliptical shape, the nanomagnet’s magnetization has two stable (mutually antiparallel) orientations along the major axis, which can encode the binary bits 0 and 1. A voltage pulse of sub-ns duration and amplitude few to few tens of mV applied across the piezoelectric generates enough strain in the nanomagnet to switch its magnetization from one stable state to the other by virtue of the inverse magnetostriction (or Villari) effect, with an energy expenditure that is roughly an order of magnitude smaller than what it takes to switch a modern-day electronic transistor. That possibility, along with the fact that such a switch is non-volatile unlike the conventional transistor, generated significant excitement. However, it was later tempered by the realization that straintronic switching is also extremelyerror-prone, which may preclude many digital applications, particularly in Boolean logic. In this perspective, we offer the view that there is plenty of room for magnetic straintronics in theanalogdomain, which is much more forgiving of switching errors, and where the excellent energy-efficiency and non-volatility are a boon. Analog straintronics can have intriguing applications in many areas, such as a new genre of aggressively miniaturized electromagnetic antennas that defy the Harrington limits on the gain and radiation efficiency of conventional antennas, analog arithmetic multipliers (and ultimately vector matrix multipliers) for non-volatile deep learning networks with very small footprint and excellent energy-efficiency, and relatively high-power microwave oscillators with output frequency in the X-band. When combined with spintronics, analog straintronics can also implement a new type of spin field effect transistor employing quantum materials such as topological insulators, and they have unusual transfer characteristics which can be exploited for analog tasks such as frequency multiplication using just a single transistor. All this hints at a world of new possibilities in the analog domain that deserves serious attention. 
    more » « less