skip to main content

Title: Phase- shifted 3D Imaging of Rotating Milling/Drilling tools
Drilling and milling operations are material removal processes involved in everyday conventional productions, especially in the high-speed metal cutting industry. The monitoring of tool information (wear, dynamic behavior, deformation, etc.) is essential to guarantee the success of product fabrication. Many methods have been applied to monitor the cutting tools from the information of cutting force, spindle motor current, vibration, as well as sound acoustic emission. However, those methods are indirect and sensitive to environmental noises. Here, the in-process imaging technique that can capture the cutting tool information while cutting the metal was studied. As machinists judge whether a tool is worn-out by the naked eye, utilizing the vision system can directly present the performance of the machine tools. We proposed a phase shifted strobo-stereoscopic method (Figure 1) for three-dimensional (3D) imaging. The stroboscopic instrument is usually applied for the measurement of fast-moving objects. The operation principle is as follows: when synchronizing the frequency of the light source illumination and the motion of object, the object appears to be stationary. The motion frequency of the target is transferring from the count information of the encoder signals from the working rotary spindle. If small differences are added to the frequency, the object more » appears to be slowly moving or rotating. This effect can be working as the source for the phase-shifting; with this phase information, the target can be whole-view 3D reconstructed by 360 degrees. The stereoscopic technique is embedded with two CCD cameras capturing images that are located bilateral symmetrically in regard to the target. The 3D scene is reconstructed by the location information of the same object points from both the left and right images. In the proposed system, an air spindle was used to secure the motion accuracy and drilling/milling speed. As shown in Figure 2, two CCDs with 10X objective lenses were installed on a linear rail with rotary stages to capture the machine tool bit raw picture for further 3D reconstruction. The overall measurement process was summarized in the flow chart (Figure 3). As the count number of encoder signals is related to the rotary speed, the input speed (unit of RPM) was set as the reference signal to control the frequency (f0) of the illumination of the LED. When the frequency was matched with the reference signal, both CCDs started to gather the pictures. With the mismatched frequency (Δf) information, a sequence of images was gathered under the phase-shifted process for a whole-view 3D reconstruction. The study in this paper was based on a 3/8’’ drilling tool performance monitoring. This paper presents the principle of the phase-shifted strobe-stereoscopic 3D imaging process. A hardware set-up is introduced, , as well as the 3D imaging algorithm. The reconstructed image analysis under different working speeds is discussed, the reconstruction resolution included. The uncertainty of the imaging process and the built-up system are also analyzed. As the input signal is the working speed, no other information from other sources is required. This proposed method can be applied as an on-machine or even in-process metrology. With the direct method of the 3D imaging machine vision system, it can directly offer the machine tool surface and fatigue information. This presented method can supplement the blank for determining the performance status of the machine tools, which further guarantees the fabrication process. « less
Authors:
;
Award ID(s):
1902697
Publication Date:
NSF-PAR ID:
10217890
Journal Name:
American Society for Precision Engineering
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a feature-selective segmentation and merging technique to achieve spatially resolved surface profiles of the parts by 3D stereoscopy and strobo-stereoscopy. A pair of vision cameras capture images of the parts at different angles, and 3D stereoscopic images can be reconstructed. Conventional filtering processes of the 3D images involve data loss and lower the spatial resolution of the image. In this study, the 3D reconstructed image was spatially resolved by automatically recognizing and segmenting the features on the raw images, locally and adaptively applying super-resolution algorithm to the segmented images based on the classified features, and then mergingmore »those filtered segments. Here, the features are transformed into masks that selectively separate the features and background images for segmentation. The experimental results were compared with those of conventional filtering methods by using Gaussian filters and bandpass filters in terms of spatial frequency and profile accuracy. As a result, the selective feature segmentation technique was capable of spatially resolved 3D stereoscopic imaging while preserving imaging features.« less
  2. In this paper, we propose a model for parallel magnetic resonance imaging (pMRI) reconstruction, regularized by a carefully designed tight framelet system, that can lead to reconstructed images with much less artifacts in comparison to those from existing models. Our model is motivated from the observations that each receiver coil in a pMRI system is more sensitive to the specific object nearest to the coil, and all coil images are correlated. To exploit these observations, we first stack all coil images together as a 3-dimensional (3D) data matrix, and then design a 3D directional Haar tight framelet (3DHTF) to representmore »it. After analyzing sparse information of the coil images provided by the high-pass filters of the 3DHTF, we separate the high-pass filters into effective ones and ineffective ones, and we then devise a 3D directional Haar semi-tight framelet (3DHSTF) from the 3DHTF by replacing its ineffective filters with only one filter. This 3DHSTF is tailor-made for coil images, meanwhile, giving a significant saving in computation comparing to the 3DHTF. With the 3DHSTF, we propose an l1-3DHSTF model for pMRI reconstruction. Numerical experiments for MRI phantom and in-vivo data sets are provided to demonstrate the superiority of our l1-3DHSTF model in terms of the efficiency of reducing aliasing artifacts in the reconstructed images.« less
  3. Abstract Imaging through diffusers presents a challenging problem with various digital image reconstruction solutions demonstrated to date using computers. Here, we present a computer-free, all-optical image reconstruction method to see through random diffusers at the speed of light. Using deep learning, a set of transmissive diffractive surfaces are trained to all-optically reconstruct images of arbitrary objects that are completely covered by unknown, random phase diffusers. After the training stage, which is a one-time effort, the resulting diffractive surfaces are fabricated and form a passive optical network that is physically positioned between the unknown object and the image plane to all-opticallymore »reconstruct the object pattern through an unknown, new phase diffuser. We experimentally demonstrated this concept using coherent THz illumination and all-optically reconstructed objects distorted by unknown, random diffusers, never used during training. Unlike digital methods, all-optical diffractive reconstructions do not require power except for the illumination light. This diffractive solution to see through diffusers can be extended to other wavelengths, and might fuel various applications in biomedical imaging, astronomy, atmospheric sciences, oceanography, security, robotics, autonomous vehicles, among many others.« less
  4. The recent advent of whole slide imaging (WSI) systems has moved digital pathology closer to diagnostic applications and clinical practices. Integrating WSI with machine learning promises the growth of this field in upcoming years. Here we report the design and implementation of a handheld, colour-multiplexed, and AI-powered ptychographic whole slide scanner for digital pathology applications. This handheld scanner is built using low-cost and off-the-shelf components, including red, green, and blue laser diodes for sample illumination, a modified stage for programmable sample positioning, and a synchronized image sensor pair for data acquisition. We smear a monolayer of goat blood cells onmore »the main sensor for high-resolution lensless coded ptychographic imaging. The synchronized secondary sensor acts as a non-contact encoder for precisely tracking the absolute object position for ptychographic reconstruction. For WSI, we introduce a new phase-contrast-based focus metric for post-acquisition autofocusing of both stained and unstained specimens. We show that the scanner can resolve the 388-nm linewidth on the resolution target and acquire gigapixel images with a 14 mm × 11 mm area in ∼70 seconds. The imaging performance is validated with regular stained pathology slides, unstained thyroid smears, and malaria-infected blood smears. The deep neural network developed in this study further enables high-throughput cytometric analysis using the recovered complex amplitude. The reported do-it-yourself scanner offers a portable solution to transform the high-end WSI system into one that can be made widely available at a low cost. The capability of high-throughput quantitative phase imaging may also find applications in rapid on-site evaluations.« less
  5. Chatter detection has become a prominent subject of interest due to its effect on cutting tool life, surface finish and spindle of machine tool. Most of the existing methods in chatter detection literature are based on signal processing and signal decomposition. In this study, we use topological features of data simulating cutting tool vibrations, combined with four supervised machine learning algorithms to diagnose chatter in the milling process. Persistence diagrams, a method of representing topological features, are not easily used in the context of machine learning, so they must be transformed into a form that is more amenable. Specifically, wemore »will focus on two different methods for featurizing persistence diagrams, Carlsson coordinates and template functions. In this paper, we provide classification results for simulated data from various cutting configurations, including upmilling and downmilling, in addition to the same data with some added noise. Our results show that Carlsson Coordinates and Template Functions yield accuracies as high as 96% and 95%, respectively. We also provide evidence that these topological methods are noise robust descriptors for chatter detection.« less