skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sentinel-2 Leaf Area Index Estimation for Pine Plantations in the Southeastern United States
Leaf area index (LAI) is an important biophysical indicator of forest health that is linearly related to productivity, serving as a key criterion for potential nutrient management. A single equation was produced to model surface reflectance values captured from the Sentinel-2 Multispectral Instrument (MSI) with a robust dataset of field observations of loblolly pine (Pinus taeda L.) LAI collected with a LAI-2200C plant canopy analyzer. Support vector machine (SVM)-supervised classification was used to improve the model fit by removing plots saturated with aberrant radiometric signatures that would not be captured in the association between Sentinel-2 and LAI-2200C. The resulting equation, LAI = 0.310SR − 0.098 (where SR = the simple ratio between near-infrared (NIR) and red bands), displayed good performance ( R 2 = 0.81, RMSE = 0.36) at estimating the LAI for loblolly pine within the analyzed region at a 10 m spatial resolution. Our model incorporated a high number of validation plots (n = 292) spanning from southern Virginia to northern Florida across a range of soil textures (sandy to clayey), drainage classes (well drained to very poorly drained), and site characteristics common to pine forest plantations in the southeastern United States. The training dataset included plot-level treatment metrics—silviculture intensity, genetics, and density—on which sensitivity analysis was performed to inform model fit behavior. Plot density, particularly when there were ≤618 trees per hectare, was shown to impact model performance, causing LAI estimates to be overpredicted (to a maximum of X i + 0.16). Silviculture intensity (competition control and fertilization rates) and genetics did not markedly impact the relationship between SR and LAI. Results indicate that Sentinel-2’s improved spatial resolution and temporal revisit interval provide new opportunities for managers to detect within-stand variance and improve accuracy for LAI estimation over current industry standard models.  more » « less
Award ID(s):
1916552
PAR ID:
10217904
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
12
Issue:
9
ISSN:
2072-4292
Page Range / eLocation ID:
1406
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Vegetation indices calculated from remotely sensed satellite imagery are commonly used within empirically derived models to estimate leaf area index in loblolly pine plantations in the southeastern United States. The data used to parameterize the models typically come with observation errors, resulting in biased parameters. The objective of this study was to quantify and reduce the effects of observation errors on a leaf area index (LAI) estimation model using imagery from Landsat 5 TM and 7 ETM+ and over 1500 multitemporal measurements from a Li-Cor 2000 Plant Canopy Analyzer. Study data comes from a 16 quarter 1 ha plot with 1667 trees per hectare (2 m × 3 m spacing) fertilization and irrigation research site with re-measurements taken between 1992 and 2004. Using error-in-variable methods, we evaluated multiple vegetation indices, calculated errors associated with their observations, and corrected for them in the modeling process. We found that the normalized difference moisture index provided the best correlation with below canopy LAI measurements (76.4%). A nonlinear model that accounts for the nutritional status of the stand was found to provide the best estimates of LAI, with a root mean square error of 0.418. The analysis in this research provides a more extensive evaluation of common vegetation indices used to estimate LAI in loblolly pine plantations and a modeling framework that extends beyond the typical linear model. The proposed model provides a simple to use form allowing forest practitioners to evaluate LAI development and its uncertainty in historic pine plantations in a spatial and temporal context. 
    more » « less
  2. Tree plantations represent an important component of the global carbon (C) cycle and are expected to increase in prevalence during the 21st century. We examined how silvicultural approaches that optimize economic returns in loblolly pine (Pinus taeda L.) plantations affected the accumulation of C in pools of vegetation, detritus, and mineral soil up to 100 cm across the loblolly pine’s natural range in the southeastern United States. Comparisons of silvicultural treatments included competing vegetation or ‘weed’ control, fertilization, thinning, and varying intensities of silvicultural treatment for 106 experimental plantations and 322 plots. The average age of the sampled plantations was 17 years, and the C stored in vegetation (pine and understory) averaged 82.1 ± 3.0 (±std. error) Mg C ha−1, and 14.3 ± 0.6 Mg C ha−1 in detrital pools (soil organic layers, coarse-woody debris, and soil detritus). Mineral soil C (0–100 cm) averaged 79.8 ± 4.6 Mg C ha−1 across sites. For management effects, thinning reduced vegetation by 35.5 ± 1.2 Mg C ha−1 for all treatment combinations. Weed control and fertilization increased vegetation between 2.3 and 5.7 Mg C ha−1 across treatment combinations, with high intensity silvicultural applications producing greater vegetation C than low intensity (increase of 21.4 ± 1.7 Mg C ha−1). Detrital C pools were negatively affected by thinning where either fertilization or weed control were also applied, and were increased with management intensity. Mineral soil C did not respond to any silvicultural treatments. From these data, we constructed regression models that summarized the C accumulation in detritus and detritus + vegetation in response to independent variables commonly monitored by plantation managers (site index (SI), trees per hectare (TPH) and plantation age (AGE)). The C stored in detritus and vegetation increased on average with AGE and both models included SI and TPH. The detritus model explained less variance (adj. R2 = 0.29) than the detritus + vegetation model (adj. R2 = 0.87). A general recommendation for managers looking to maximize C storage would be to maintain a high TPH and increase SI, with SI manipulation having a greater relative effect. From the model, we predict that a plantation managed to achieve the average upper third SI (26.8) within our observations, and planted at 1500 TPH, could accumulate ~85 Mg C ha−1 by 12 years of age in detritus and vegetation, an amount greater than the region’s average mineral soil C pool. Notably, SI can be increased using both genetic and silviculture technologies. 
    more » « less
  3. null (Ed.)
    A fine-resolution region-wide map of forest site productivity is an essential need for effective large-scale forestry planning and management. In this study, we incorporated Sentinel-2 satellite data into an increment-based measure of forest productivity (biomass growth index (BGI)) derived from climate, lithology, soils, and topographic metrics to map improved BGI (iBGI) in parts of North American Acadian regions. Initially, several Sentinel-2 variables including nine single spectral bands and 12 spectral vegetation indices (SVIs) were used in combination with forest management variables to predict tree volume/ha and height using Random Forest. The results showed a 10–12 % increase in out of bag (OOB) r2 when Sentinel-2 variables were included in the prediction of both volume and height together with BGI. Later, selected Sentinel-2 variables were used for biomass growth prediction in Maine, USA and New Brunswick, Canada using data from 7738 provincial permanent sample plots. The Sentinel-2 red-edge position (S2REP) index was identified as the most important variable over others to have known influence on site productivity. While a slight improvement in the iBGI accuracy occurred compared to the base BGI model (~2%), substantial changes to coefficients of other variables were evident and some site variables became less important when S2REP was included. 
    more » « less
  4. Abstract Understanding the determinants of urban forest diversity and structure is important for preserving biodiversity and sustaining ecosystem services in cities. However, comprehensive field assessments are resource‐intensive, and landscape‐level approaches may overlook heterogeneity within urban regions. To address this challenge, we combined remote sensing with field inventories to comprehensively map and analyze urban forest attributes in forest patches across the Minneapolis‐St. Paul Metropolitan Area (MSPMA) in a multistep process. First, we developed predictive machine learning models of forest attributes by integrating data from forest inventories (from 40 12.5‐m‐radius plots) with Global Ecosystem Dynamics Investigation (GEDI) observations and Sentinel‐2‐derived land surface phenology (LSP). These models enabled accurate predictions of forest attributes, specifically nine metrics of plant diversity (tree species richness, tree abundance, and understory plant abundance), structure (average canopy height, dbh, and canopy density), and structural complexity (variability in canopy height, dbh, and canopy density) with relative errors ranging between 11% and 21%. Second, we applied these machine learning models to predict diversity metrics for 804 additional plots from GEDI and Sentinel‐2. Finally, we applied Bayesian multilevel models to the predicted diversity metrics to assess the influence of multiple factors—patch dimensions, landscape attributes, plot position, and jurisdictional agency—on these forest attributes across the 804 predicted plots. The models showed all predictors have some degree of effect on forest attributes, presenting varying explanatory power withR2values ranging from 0.071 to 0.405. Overall, plot characteristics (e.g., distance to nearest trail, proximity to forest edge) and jurisdictional agency explained a large portion of the variability across patches, whereas patch and landscape characteristics did not. The relative effect of plot versus management sets of predictors on the marginal ΔR2was heterogeneous across metrics and ecological subsections (an ecological classification designation). The multiplicity of determinants influencing urban forests emphasizes the intricate nature of urban ecosystems and highlights nuanced, heterogeneous relationships between urban ecological and anthropogenic factors that determine forest properties. Effectively enhancing biodiversity in urban forests requires assessments, management, and conservation strategies tailored for context‐specific characteristics. 
    more » « less
  5. Amazon forests are becoming increasingly vulnerable to disturbances such as droughts, fires, windstorms, logging, and forest fragmentation, all of which lead to forest degradation. Nevertheless, quantifying the extent and severity of disturbances and their cumulative impact on forest degradation remains a significant challenge. In this study, we combined multispectral data from Landsat sensors with hyperspectral data from the Earth Observing-One (Hyperion/EO-1) sensor to evaluate the efficacy of multiple vegetation indices in detecting forest responses to disturbances in an experimentally burned forest in southeastern Amazonia. Our experimental area was adjacent to an agricultural field and consisted of three 50-ha treatments – an unburned Control, a plot burned every three years, and a plot burned annually from 2004 to 2010. All plots were monitored to assess vegetation recovery after fire disturbance. These areas were also affected by three drought events (2007, 2010, and 2016) over the study period. We evaluated a total of 18 Vegetation Indices (VI), one unique to Landsat, 12 unique to Hyperion/EO-1, and five commons to both satellites (i.e., 6 total from Landsat and 17 from Hyperion). We used linear models (LM) to evaluate how changes in ground observations of forest structure (biomass, leaf area index [LAI], and litter production) associated with fire were captured by the two VIs most sensitive to forest degradation. Our results indicate that the Plant Senescence Reflectance Index (PSRI) derived from Hyperion/EO-1 was the most sensitive to vegetation changes associated with forest fires, increasing by 94% in burned vs. unburned forests. Of the Landsat-derived VIs, we found that the Green-Red Normalized Difference (GRND) were the most sensitive to forest degradation by fire, showing a marked decline (87%) in the burned plots compared with the unburned Control. However, compared to PSRI, the GRND was a better predictor of changes associated with fire, both in the forest interior or forest edge, for the three ground variables: biomass stocks (r2 =0.5–0.8), LAI (r2=0.8–0.9), and litter production (r2=0.4–0.7). This study demonstrate that VIs can detect forest responses to fire and other disturbances over time, highlighting the relative strengths of each VI. In doing so, it shows how the integration of multispectral and hyperspectral data can be useful for monitoring tropical forest degradation and recovery. Moreover, it provides valuable insights into the limitations of existing approaches, which can inform the design of next-generation sensors for global forest monitoring. 
    more » « less