skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using satellite imagery to understand and promote sustainable development
Accurate and comprehensive measurements of a range of sustainable development outcomes are fundamental inputs into both research and policy. We synthesize the growing literature that uses satellite imagery to understand these outcomes, with a focus on approaches that combine imagery with machine learning. We quantify the paucity of ground data on key human-related outcomes and the growing abundance and improving resolution (spatial, temporal, and spectral) of satellite imagery. We then review recent machine learning approaches to model-building in the context of scarce and noisy training data, highlighting how this noise often leads to incorrect assessment of model performance. We quantify recent model performance across multiple sustainable development domains, discuss research and policy applications, explore constraints to future progress, and highlight research directions for the field.  more » « less
Award ID(s):
1651565
PAR ID:
10217926
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
371
Issue:
6535
ISSN:
0036-8075
Page Range / eLocation ID:
Article No. eabe8628
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Loss and damage from climate change, recognized as a unique research and policy domain through the Warsaw International Mechanism (WIM) in 2013, has drawn increasing attention among climate scientists and policy makers. Labelled by some as the “third pillar” of the international climate regime—along with mitigation and adaptation—it has been suggested that loss and damage has the potential to catalyze important synergies with other international agendas, particularly sustainable development. However, the specific approaches to sustainable development that inform loss and damage research and how these approaches influence research outcomes and policy recommendations remain largely unexplored. We offer a systematic analysis of the assumptions of sustainable development that underpins loss and damage scholarship through a comprehensive review of peer-reviewed research on loss and damage. We demonstrate that the use of specific metrics, decision criteria, and policy prescriptions by loss and damage researchers and practitioners implies an unwitting adherence to different underlying theories of sustainable development, which in turn impact how loss and damage is conceptualized and applied. In addition to research and policy implications, our review suggests that assumptions about the aims of sustainable development determine how loss and damage is conceptualized, measured, and governed, and the human development approach currently represents the most advanced perspective on sustainable development and thus loss and damage. This review supports sustainable development as a coherent, comprehensive, and integrative framework for guiding further conceptual and empirical development of loss and damage scholarship. 
    more » « less
  2. Abstract Efficient, more accurate reporting of maize ( Zea mays L.) phenology, crop condition, and progress is crucial for agronomists and policy makers. Integration of satellite imagery with machine learning models has shown great potential to improve crop classification and facilitate in-season phenological reports. However, crop phenology classification precision must be substantially improved to transform data into actionable management decisions for farmers and agronomists. An integrated approach utilizing ground truth field data for maize crop phenology (2013–2018 seasons), satellite imagery (Landsat 8), and weather data was explored with the following objectives: (i) model training and validation—identify the best combination of spectral bands, vegetation indices (VIs), weather parameters, geolocation, and ground truth data, resulting in a model with the highest accuracy across years at each season segment (step one) and (ii) model testing—post-selection model performance evaluation for each phenology class with unseen data (hold-out cross-validation) (step two). The best model performance for classifying maize phenology was documented when VIs (NDVI, EVI, GCVI, NDWI, GVMI) and vapor pressure deficit (VPD) were used as input variables. This study supports the integration of field ground truth, satellite imagery, and weather data to classify maize crop phenology, thereby facilitating foundational decision making and agricultural interventions for the different members of the agricultural chain. 
    more » « less
  3. Abstract: Aim In this study, we present the results of a project which used Landsat Collection 2 Surface Reflectance data and European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) data to develop a machine learning model to estimate Secchi depth in Lake Yojoa, Honduras. Methods Satellite remote sensing data obtained within a 7-day window of an in situ measurement were matched with in situ Secchi depth measurements and were partitioned into train-test-validate data sets for model development. Results The machine learning model had good (R2= 0.57) agreement and reasonable uncertainty (MAE = 0.58 m) between remotely estimated and in situ observed Secchi depth. Application of the machine learning model increased the monitoring record of Lake Yojoa from 6 years of measured data to a 23-year record. Conclusions This model demonstrates the utility of coordinating in situ sampling schedules of short-term research projects with satellite imagery acquisition schedules in order to increase the temporal coverage of remote sensing derived estimates of water quality in understudied lakes. 
    more » « less
  4. Abstract There has been a great deal of recent interest in the development of spatial prediction algorithms for very large datasets and/or prediction domains. These methods have primarily been developed in the spatial statistics community, but there has been growing interest in the machine learning community for such methods, primarily driven by the success of deep Gaussian process regression approaches and deep convolutional neural networks. These methods are often computationally expensive to train and implement and consequently, there has been a resurgence of interest in random projections and deep learning models based on random weights—so called reservoir computing methods. Here, we combine several of these ideas to develop the random ensemble deep spatial (REDS) approach to predict spatial data. The procedure uses random Fourier features as inputs to an extreme learning machine (a deep neural model with random weights), and with calibrated ensembles of outputs from this model based on different random weights, it provides a simple uncertainty quantification. The REDS method is demonstrated on simulated data and on a classic large satellite data set. 
    more » « less
  5. To date, Deep Learning models for archaeological feature detection have generally been built on the back of off-the-shelf convolutional neural networks (CNNs) and vision Transformer (ViT) models, which are pretrained on a variety of image types, sources, and subjects that are not specific to analyzing high-resolution satellite imagery. Recent advances in transformer-based vision models and self-supervised training approaches make it possible for researchers to generate foundation models that are more finely attuned to specific domains, without huge amounts of human-annotated training data. We discuss the development of two such models employing Meta's transformer-based DINOv2 framework. The first, DeepAndes, is based on the ingestion of a 3 million chip sample from a two million square km area of high-resolution multispectral satellite imagery of the Andean region. This foundation model has broad utility across the social and earth sciences. The second, DeepAndesArch is fine-tuned labeled archaeological training data collected by the GeoPACHA project to create an archaeology-focused version of DeepAndes. We present the processes involved in generating DeepAndes and DeepAndesArch and discuss prospects for foundation models in archaeological research 
    more » « less