skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 7, 2026

Title: Foundation Models for Archaeological Feature Detection: Advances and Prospects
To date, Deep Learning models for archaeological feature detection have generally been built on the back of off-the-shelf convolutional neural networks (CNNs) and vision Transformer (ViT) models, which are pretrained on a variety of image types, sources, and subjects that are not specific to analyzing high-resolution satellite imagery. Recent advances in transformer-based vision models and self-supervised training approaches make it possible for researchers to generate foundation models that are more finely attuned to specific domains, without huge amounts of human-annotated training data. We discuss the development of two such models employing Meta's transformer-based DINOv2 framework. The first, DeepAndes, is based on the ingestion of a 3 million chip sample from a two million square km area of high-resolution multispectral satellite imagery of the Andean region. This foundation model has broad utility across the social and earth sciences. The second, DeepAndesArch is fine-tuned labeled archaeological training data collected by the GeoPACHA project to create an archaeology-focused version of DeepAndes. We present the processes involved in generating DeepAndes and DeepAndesArch and discuss prospects for foundation models in archaeological research  more » « less
Award ID(s):
2419793
PAR ID:
10621637
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Computer Applications in Archaeology Conference 2025
Date Published:
Format(s):
Medium: X
Location:
Athens, Greece
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate mapping of nearshore bathymetry is essential for coastal management, navigation, and environmental monitoring. Traditional bathymetric mapping methods such as sonar surveys and LiDAR are often time-consuming and costly. This paper introduces BathyFormer, a novel vision transformer- and encoder-based deep learning model designed to estimate nearshore bathymetry from high-resolution multispectral satellite imagery. This methodology involves training the BathyFormer model on a dataset comprising satellite images and corresponding bathymetric data obtained from the Continuously Updated Digital Elevation Model (CUDEM). The model learns to predict water depths by analyzing the spectral signatures and spatial patterns present in the multispectral imagery. Validation of the estimated bathymetry maps using independent hydrographic survey data produces a root mean squared error (RMSE) ranging from 0.55 to 0.73 m at depths of 2 to 5 m across three different locations within the Chesapeake Bay, which were independent of the training set. This approach shows significant promise for large-scale, cost-effective shallow water nearshore bathymetric mapping, providing a valuable tool for coastal scientists, marine planners, and environmental managers. 
    more » « less
  2. Archaeological surveys conducted through the inspection of high-resolution satellite imagery promise to transform how archaeologists conduct large-scale regional and supra-regional research. However, conducting manual surveys of satellite imagery is labour- and time-intensive, and low target prevalence substantially increases the likelihood of miss-errors (false negatives). In this article, the authors compare the results of an imagery survey conducted using artificial intelligence computer vision techniques (Convolutional Neural Networks) to a survey conducted manually by a team of experts through the Geo-PACHA platform (for further details of the project, see Wernkeet al. 2023). Results suggest that future surveys may benefit from a hybrid approach—combining manual and automated methods—to conduct an AI-assisted survey and improve data completeness and robustness. 
    more » « less
  3. This paper presents the results of a large scale, drone-based aerial survey in northeastern Jordan. Drones have rapidly become one of the most cost-effective and efficient tools for collecting high-resolution landscape data, fitting between larger-scale, lower-resolution satellite data collection and the significantly more limited traditional terrestrial survey approaches. Drones are particularly effective in areas where anthropogenic features are visible on the surface but are too small to identify with commonly and economically available satellite data. Using imagery from fixed-wing and rotary-wing aircraft, along with photogrammetric processing, we surveyed an extensive archaeological landscape spanning 32 km2 at the site of Wadi al-Qattafi in the eastern badia region of Jordan, the largest archaeological drone survey, to date, in Jordan. The resulting data allowed us to map a wide range of anthropogenic features, including hunting traps, domestic structures, and tombs, as well as modern alterations to the landscape including road construction and looting pits. We documented thousands of previously unrecorded and largely unknown prehistoric structures, providing an improved understanding of major shifts in the prehistoric use of this landscape. 
    more » « less
  4. Rapid global warming is catalyzing widespread permafrost degradation in the Arctic, leading to destructive land-surface subsidence that destabilizes and deforms the ground. Consequently, human-built infrastructure constructed upon permafrost is currently at major risk of structural failure. Risk assessment frameworks that attempt to study this issue assume that precise information on the location and extent of infrastructure is known. However, complete, high-quality, uniform geospatial datasets of built infrastructure that are readily available for such scientific studies are lacking. While imagery-enabled mapping can fill this knowledge gap, the small size of individual structures and vast geographical extent of the Arctic necessitate large volumes of very high spatial resolution remote sensing imagery. Transforming this ‘big’ imagery data into ‘science-ready’ information demands highly automated image analysis pipelines driven by advanced computer vision algorithms. Despite this, previous fine resolution studies have been limited to manual digitization of features on locally confined scales. Therefore, this exploratory study serves as the first investigation into fully automated analysis of sub-meter spatial resolution satellite imagery for automated detection of Arctic built infrastructure. We tasked the U-Net, a deep learning-based semantic segmentation model, with classifying different infrastructure types (residential, commercial, public, and industrial buildings, as well as roads) from commercial satellite imagery of Utqiagvik and Prudhoe Bay, Alaska. We also conducted a systematic experiment to understand how image augmentation can impact model performance when labeled training data is limited. When optimal augmentation methods were applied, the U-Net achieved an average F1 score of 0.83. Overall, our experimental findings show that the U-Net-based workflow is a promising method for automated Arctic built infrastructure detection that, combined with existing optimized workflows, such as MAPLE, could be expanded to map a multitude of infrastructure types spanning the pan-Arctic. 
    more » « less
  5. Global warming is one of the world’s most pressing issues. The study of its effects on the polar ice caps and other arctic environments, however, can be hindered by the often dangerous and difficult to navigate terrain found there. Multi-terrain autonomous vehicles can assist researchers by providing a mobile platform on which to collect data in these harsh environments while avoiding any risk to human life and speeding up the research process. The mechanical design and ultimate efficacy of these autonomous robotic vehicles depends largely on the specific missions they are deployed for, but terrain conditions can vary wildly geographically as well as seasonally, making mission planning for these unmanned vehicles more difficult. This paper proposes the use of various UNet-based neural network architectures to generate digital elevation maps from satellite images, and explores and compares their efficacy on a single set of training and validation datasets generated from satellite imagery. These digital elevation maps generated by the model could be used by researchers not only to track the change in arctic topography over time, but to quickly provide autonomous exploratory research rovers with the topographical information necessary to decide on optimal paths during the mission. This paper analyzes different model architectures and training schemes: a traditional UNet, a traditional UNet with data augmentation, a UNet with a single active skip-layer vision transformer (ViT), and a UNet with multiple active skip-layer ViT. Each model was trained on a dataset of satellite images and corresponding digital elevation maps of Ellesmere Island, Canada. Utilizing ViTs did not demonstrate a significant improvement in UNet performance, though this could change with longer training. This paper proposes opportunities to improve performance for these neural networks, as well as next steps for further research, including improving the diversity of images in the dataset, generating a testing dataset from a completely different geographic location, and allowing the models more time to train. 
    more » « less