skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Applicability of 3D Spectral Element Method for Computing Close-Range Underwater Piling Noises
Pile driving is used for constructing foundation supports for offshore structures. Underwater noise, induced by in-water pile driving, could adversely impact marine life near the piling location. Many studies have computed this noise in close ranges by using semi-analytical models and Finite Element Method (FEM) models. This work presents a Spectral Element Method (SEM) wave simulator as an alternative simulation tool to obtain close-range underwater piling noise in complex, fully three-dimensional, axially-asymmetric settings in the time domain for impacting force signals with high-frequency contents (e.g., frequencies greater than 1000[Formula: see text]Hz). The presented numerical results show that the flexibility of SEM can accommodate the axially-asymmetric geometry of a model, its heterogeneity, and fluid-solid coupling. We showed that there are multiple Mach Cones of different angles in fluid and sediment caused by the difference in wave speeds in fluid, a pile, and sediment. The angles of Mach Cones in our numerical results match those that are theoretically evaluated. A previous work 18 had shown that Mach Cone waves lead to intense amplitudes of underwater piling noise via a FEM simulation in an axis-symmetric setting. Since it modeled sediment as fluid with a larger wave speed than that of water, we examined if our SEM simulation, using solid sediment–fluid coupling, leads to additional Mach Cones. Because this work computes the shear wave in sediment and the downward-propagating shear wave in a pile, we present six Mach Cones in fluid and sediment induced by downward-propagating P- and S-waves in a pile in lieu of two previously-reported Mach Cones in fluid and sediment (modeled as fluid) induced by a downward-propagating P-wave in a pile. We also showed that the amplitudes of the close-range underwater noise are dependent on the cross-sectional geometry of a pile. In addition, when a pile is surrounded by a solid of an axially-asymmetric geometry, waves are reflected from the surface of the surrounding solid back to the fluid so that constructive and destructive interferences of waves take place in the fluid and affect the amplitude of the underwater piling noise.  more » « less
Award ID(s):
2044887 1855406
PAR ID:
10218043
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Theoretical and Computational Acoustics
Volume:
27
Issue:
04
ISSN:
2591-7285
Page Range / eLocation ID:
1950012
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report the first lidar observations of vertical fluxes of sensible heat and meteoric Na from 78 to 110 km in late May 2020 at McMurdo, Antarctica. The measurements include contributions from the complete temporal spectrum of gravity waves and demonstrate that wave‐induced vertical transport associated with atmospheric mixing by non‐breaking gravity waves, Stokes drift imparted by the wave spectrum, and perturbed chemistry of reactive species, can make significant contributions to constituent and heat transport in the mesosphere and lower thermosphere (MLT). The measured sensible heat and Na fluxes exhibit downward peaks at 84 km (−3.0 Kms−1and −5.5 × 104 cm−2s−1) that are ∼4 km lower than the flux peak altitudes observed at midlatitudes. This is likely caused by the strong downwelling over McMurdo in late May. The Na flux magnitude is double the maximum at midlatitudes, which we believe is related to strong persistent gravity waves in the MLT at McMurdo. To achieve good agreement between the measured Na flux and theory, it was necessary to infer that a large fraction of gravity wave energy was propagating downward, especially between 80 and 95 km where the Na flux and wave dissipation were largest. These downward propagating waves are likely secondary waves generated in‐situ by the dissipation of primary waves that originate from lower altitudes. The sensible heat flux transitions from downward below 90 km to upward from 97 to 106 km. The observations are explained with the fully compressible solutions for polarization relations of primary and secondary gravity waves withλz > 10 km. 
    more » « less
  2. This paper addresses peristaltic flow induced in a non-axisymmetric annular tube by a periodic small-amplitude wave of arbitrary shape propagating axially along its inner surface, assumed to be a circular cylinder. The study is motivated by recent in vivo experimental observations pertaining to the flow of cerebrospinal fluid along the perivascular spaces of cerebral arteries. The analysis employs the lubrication approximation, describing low-Reynolds-number peristaltic flow in the long-wavelength approximation. Closed-form analytic expressions are derived for the average pumping rate in infinitely long tubes and also in tubes of finite length. Consideration is also given to the transverse motion arising in non-axisymmetric tubes. For small-amplitude waves, the solution is reduced to the integration of a parameter-free Stokes-flow problem, which is solved for relevant cross-sectional shapes, with closed-form analytical results derived for thin canals. 
    more » « less
  3. In this work, we conduct controlled experiments in a wave flume to represent different wave-wave interactions occurring in the swash zone. Using solitary waves as the forcing condition, we combined different wave amplitudes with separation times between the wave events. Experimental results show that interactions developing in the swash zone present three main stages: A jet slamming, an induced splash, and a region where the flow becomes fully 3D turbulent. We identified that the location where the interactions occur and the type of interaction depends on two main factors, the relationship between the wave amplitudes and the separation time between these wave events. Additionally, we were able to mimic the wave-wave interactions observed in real-case scenarios. Our goal is to relate these findings to the sediment transport processes in the swash zone, where interactions could develop a potential impact on the sediment transport mechanism and possible morphological changes. 
    more » « less
  4. Abstract The acoustic response of defect‐based acoustic interferometer‐like designs, known as Coupled Resonator Acoustic Waveguides (CRAWs), in 2D phononic crystals (PnCs) is reported. The PnC is composed of steel cylinders arranged in a square lattice within a water matrix with defects induced by selectively removing cylinders to create Mach‐Zehnder‐like (MZ) defect‐based interferometers. Two defect‐based acoustic interferometers of MZ‐type are fabricated, one with arms oriented horizontally and another one with arms oriented diagonally, and their transmission features are experimentally characterized using ultrasonic spectroscopy. The experimental data are compared with finite element method (FEM) simulations and with tight‐binding (TB) calculations in which each defect is treated as a resonator coupled to its neighboring ones. Significantly, the results exhibit excellent agreement indicating the reliability of the proposed approach. This comprehensive match is of paramount importance for accurately predicting and optimizing resonant modes supported by defect arrays, thus enabling the tailoring of phononic structures and defect‐based waveguides to meet specific requirements. This successful implementation of FEM and TB calculations in investigating CRAWs systems within PnCs paves the way for designing advanced acoustic devices with desired functionalities for various practical applications, demonstrating the application of solid‐state electronics principles to underwater acoustic devices description. 
    more » « less
  5. Drilled Displacement Piles (DDP) provide an ideal foundation solution that combines the benefits of ground improvement with traditional advantages of piling systems. This paper offers insights gathered from 55 construction projects in which nearly 130 DDPs were installed and tested axially. High quality site exploration data (e.g., Cone Penetration Test (CPT) and Standard Penetration Test (SPT)) were evaluated to derive geotechnical analysis parameters. The test sites consisted of mostly mixed soil types with strongly stratified layers of sand, silt, and clay. Pile diameters ranged between 35 and 61 cm (14 to 24 inches). Prior to analyzing the axial performance of DDPs, a variety of failure interpretation methods were assessed to confidently extrapolate failure loads when field testing was terminated prior to pile failure. Results of this study suggested the Van der Veen’s (1953) method to most closely estimate the load that triggers pile plunging behavior specific to DDPs, followed by the Butler & Hoy (1977) and L1-L2 methods (Hirany and Kulhawy, 1989). Hereafter, in-situ axial load test results were compared with a wide range of analytical methods, including those developed specifically for DDPs. Predictive accuracy was assessed in terms of total pile capacity and pile settlement and separated based on pile diameter, stiffness, and soil type. Most examined analytical methods underpredict the in-situ pile capacities for both, CPT and SPT -based analysis. It was also found that the difference between the experimentally determined and predicted capacities is related to the level of improvement in the surrounding soil following pile installation. A general comparison between predictive axial accuracy and the observed level of ground improvement is also discussed for sandy and mixed type of soils. 
    more » « less