skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Slingshot spiders build tensed, underdamped webs for ultrafast launches and speedy halts
We develop a mathematical model to capture the web dynamics of slingshot spiders (Araneae: Theridiosomatidae), which utilize a tension line to deform their orb webs into conical springs to hunt flying insects. Slingshot spiders are characterized by their ultrafast launch speeds and accelerations (exceeding 1300 m/s2, however a theoretical approach to characterize the underlying spatiotemporal web dynamics remains missing. To address this knowledge gap, we develop a 2D-coupled damped oscillator model of the web. Our model reveals three key insights into the dynamics of slingshot motion. First, the tension line plays a dual role: enabling the spider to load elastic energy into the web for a quick launch (in milliseconds) to displacements of 10–15 body lengths, but also enabling the spider to halt quickly, attenuating inertial oscillations. Second, the dominant energy dissipation mechanism is viscous drag by the silk lines - acting as a low Reynolds number parachute. Third, the web exhibits underdamped oscillatory dynamics through a finely-tuned balance between the radial line forces, the tension line force and viscous drag dissipation. Together, our work suggests that the conical geometry and tension-line enables the slingshot web to act as both an elastic spring and a shock absorber, for the multi-functional roles of risky predation and self-preservation.  more » « less
Award ID(s):
1941933 1806833 1656645
PAR ID:
10218156
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Comparative Physiology A
ISSN:
0340-7594
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Natural glues offer great potential as bio-inspired solutions to problems associated with the performance of synthetic adhesives. Spider viscous glues are elastic pressure sensitive adhesives (PSAs) that physically adhere to surfaces on contact across a range of environmental conditions. Extracting useful components from these secretions remains a challenge that can be met by the comparative analyses of functional analogues. Here we used 1 H NMR spectroscopy and mass spectrometry to ascertain the organic salt compositions of the PSAs of four different species of Australian spiders belonging to two lineages that independently acquired aqueous gluey secretions: the St Andrew’s cross ( Argiope keyserlingi ), the redback ( Latrodectus hasselti ), the false widow ( Steatoda grossa ), and the daddy long-legs spider ( Pholcus phalangiodes ). The PSAs from each of these spiders contained similar organic salts, albeit in variable concentrations. The adhesives of the false widow and daddy long-legs spider had mixtures of only a few components, of which betaine predominated, while the PSAs of the other spiders predominantly contained small organic acids such as GABA/GABA-amide, isethionate, and choline salts. Our results suggest that the PSA composition of spiders is likely to be influenced more by environmental factors than evolutionary history and are guided by common principles. Our findings could be valuable for facilitating the design of more sustainable synthetic glues. 
    more » « less
  2. null (Ed.)
    Synopsis Many flying insects utilize a membranous structure for flight, which is known as a “wing.” However, some spiders use silk fibers for their aerial dispersal. It is well known that spiders can disperse over hundreds of kilometers and rise several kilometers above the ground in this way. However, little is known about the ballooning mechanisms of spiders, owing to the lack of quantitative data. Recently, Cho et al. discovered previously unknown information on the types and physical properties of spiders’ ballooning silks. According to the data, a crab spider weighing 20 mg spins 50–60 ballooning silks simultaneously, which are about 200 nm thick and 3.22 m long for their flight. Based on these physical dimensions of ballooning silks, the significance of these filament-like structures is explained by a theoretical analysis reviewing the fluid-dynamics of an anisotropic particle (like a filament or a high-slender body). (1) The filament-like structure is materially efficient geometry to produce (or harvest, in the case of passive flight) fluid-dynamic force in a low Reynolds number flow regime. (2) Multiple nanoscale fibers are the result of the physical characteristics of a thin fiber, the drag of which is proportional to its length but not to its diameter. Because of this nonlinear characteristic of a fiber, spinning multiple thin ballooning fibers is, for spiders, a better way to produce drag forces than spinning a single thick spider silk, because spiders can maximize their drag on the ballooning fibers using the same amount of silk dope. (3) The mean thickness of fibers, 200 nm, is constrained by the mechanical strength of the ballooning fibers and the rarefaction effect of air molecules on a nanoscale fiber, because the slip condition on a fiber could predominate if the thickness of the fiber becomes thinner than 100 nm. 
    more » « less
  3. Abstract Predators can alter the movement of nutrients through ecosystems by depositing waste products following predation. Whilst the benefits of predator waste for large predators (e.g. bears) or dense accumulations of predators (e.g. seabirds on islands) seem clear, less is known about whether smaller, solitary predators can have measurable effects on local ecosystem processes.In separate experiments with web‐building and wandering spiders, we tested if the presence of predators affected soil nutrient content, soil respiration, soil microbial communities, and plant growth.In the first experiment with black widow spiders, total nitrogen and nitrate were not affected by spider presence, but ammonia and phosphorus were higher from soil under the edge of the spider web than soil away from the spider. Soil respiration and plant growth were both higher in soil collected from under the spider retreat compared with soil collected away from the spider web.In a second experiment with wolf spiders, we tested for interactions between spiders and soil microbial communities. There were positive effects of wolf spider presence on all soil nutrients and there were interactions between spiders and soil type (i.e. field‐collected versus autoclaved) for total carbon, total nitrogen, nitrate, and pH. Spider presence and soil type also affected soil respiration and spider presence had a large effect on the composition of the microbial community of the soil. There were also positive effects of wolf spider presence on plant biomass and plant height, with a significant interaction between spiders and soil type for plant height.Overall, our results show that two spiders with different life histories (i.e. web‐building and wandering) both have significant positive effects on plant growth through the deposition of their waste products. These effects may occur through the direct deposition of nutrients and changes in soil microbial communities. Although, further work is needed to resolve these interactions. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. Abstract Spider viscid silk adheres to insects in orb webs and is a “smart-adhesive” that quickly changes droplet size, viscosity, and adhesiveness in response to atmospheric humidity. Different species of spiders “tune” water uptake to match the humidity of their foraging environments, achieving a similar “universal” viscosity that optimizes tradeoffs in spreading versus cohesive bulk energy needed to enhance adhesion. Too much water lowers viscosity so that the glue spreads well, but cohesive failure occurs easily, generating poor adhesion. However, the optimal viscosity model of adhesion is based on experiments using smooth glass. Here we test the hypothesis that a less viscous, “over-lubricated” glue, which shows poor adhesion on smooth glass, will be stickier on hairy insects because of its greater ability to spread across three-dimensional rough surfaces. We ran adhesion tests of the furrow spider (Larinioides cornutus [Clerck 1757]) viscid silk on honey bee (Apis mellifera) thorax, with and without hairs, in either high or medium humidity. Our results show that “over-lubricated” glue increases adhesion on hairy surfaces, performing equally as well as an optimally viscous glue. 
    more » « less
  5. Signore, Giovanni (Ed.)
    Cobweb weaving spiders and their relatives spin multiple task-specific fiber types. The unique material properties of each silk type result from differences in amino acid sequence and structure of their component proteins, primarily spidroins (spider fibrous proteins). Amino acid content and gene expression measurements of spider silks suggest some spiders change expression patterns of individual protein components in response to environmental cues. We quantified mRNA abundance of three spidroin encoding genes involved in prey capture in the common house spider, Parasteatoda tepidariorum (Theridiidae), fed different diets. After 10 days of acclimation to the lab on a diet of mealworms, spiders were split into three groups: (1) individuals were immediately dissected, (2) spiders were fed high-energy crickets, or (3) spiders were fed low-energy flies, for 1 month. All spiders gained mass during the acclimation period and cricket-fed spiders continued to gain mass, while fly-fed spiders either maintained or lost mass. Using quantitative PCR, we found no significant differences in the absolute or relative abundance of dragline gene transcripts, major ampullate spidroin 1 ( MaSp1 ) and major ampullate spidroin 2 ( MaSp2 ), among groups. In contrast, prey-wrapping minor ampullate spidroin ( MiSp) gene transcripts were significantly less abundant in fly-fed than lab-acclimated spiders. However, when measured relative to Actin , cricket-fed spiders showed the lowest expression of MiSp . Our results suggest that house spiders are able to maintain silk production, even in the face of a low-quality diet. 
    more » « less