skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1941933

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In aquatic ecosystems, freshwater planarians (Dugesia spp.) function as predators, employing specialized adaptations for capturing live prey. This exploratory study examines the predatory interactions between the freshwater planarian Dugesia spp. and the California blackworm (Lumbriculus variegatus). Observations demonstrate that Dugesia is capable of capturing prey more than twice its own length. The predation process involves a dual adhesion mechanism whereby the planarian adheres simultaneously to the blackworm and the substrate, effectively immobilizing its prey. Despite the rapid escape response of blackworms, characterized by a helical swimming gait with alternating handedness, planarian adhesion frequently prevents successful escape, with no significant effect of worm size. Subsequently, Dugesia employs an eversible pharynx to initiate ingestion, consuming the internal tissues of the blackworm through suction. Blackworm injury significantly increased vulnerability to predation, suggesting that chemical cues from wounds may aid planarians in prey detection. This study provides insights into the biomechanics and behaviors of predation involving two interacting muscular hydrostats, highlighting the critical adaptations that enable planarians to subdue and consume relatively large, mobile prey. 
    more » « less
    Free, publicly-accessible full text available July 24, 2026
  2. Synopsis Rhagovelia oriander is a freshwater water strider native to the rivers and streams of North and South America, known for its distinctive skating movement on the water’s surface. This movement resembles the correlated random-walk pattern seen in microorganisms such as Escherichia coli. Previous studies have primarily focused on limb adaptations and biomechanics, leaving the ecological significance inadequately addressed. We combine field observations with controlled laboratory experiments using a flow mill to investigate the dynamics of R. oriander under typical flow conditions. Our findings indicate that this insect exhibits a two-dimensional run-and-tumble motion, often incorporating lateral tumbles following straight runs (run distance: $$30.7\pm 9.3$$ mm). We find that this behavior is resilient to changes in flow speed. In-silico simulations of particle interception demonstrated that this locomotion method enhances encounter rates compared to linear movement, particularly when the simulated food particle is following a rapid flow field. Our results document run-and-tumble locomotion in a millimeter-scale organism, showcasing a unique example of convergent behavior across diverse taxonomic groups and providing valuable insights into locomotion ecology while serving as a source of inspiration for bioinspired robotics and environmental exploration algorithms. 
    more » « less
  3. Synopsis We investigate how the Helobdella sp. freshwater leeches capture and consume Lumbriculus variegatus blackworms despite the blackworm’s ultrafast helical swimming escape reflex and ability to form large tangled “blobs.” We describe a spiral “entombment” predation strategy, where Helobdellid leeches latch onto blackworms with their anterior sucker and envelop them in a spiral cocoon. Quantitative analysis shows that larger leeches succeed more often in entombing prey, while longer worms tend to escape. The rate of spiral contraction correlates with entombment outcomes, with slower rates associated with success. These insights highlight the complex interactions between predator and prey in freshwater ecosystems, providing new perspectives on ecological adaptability and predator-prey dynamics. 
    more » « less
  4. Abstract Food consumption and waste elimination are vital functions for living systems. Although how feeding impacts animal form and function has been studied for more than a century since Darwin, how its obligate partner, excretion, controls and constrains animal behavior, size, and energetics remains largely unexplored. Here we study millimeter-scale sharpshooter insects (Cicadellidae) that feed exclusively on a plant’s xylem sap, a nutrient-deficit source (95% water). To eliminate their high-volume excreta, these insects exploit droplet superpropulsion, a phenomenon in which an elastic projectile can achieve higher velocity than the underlying actuator through temporal tuning. We combine coupled-oscillator models, computational fluid dynamics, and biophysical experiments to show that these insects temporally tune the frequency of their anal stylus to the Rayleigh frequency of their surface tension-dominated elastic drops as a single-shot resonance mechanism. Our model predicts that for these tiny insects, the superpropulsion of droplets is energetically cheaper than forming jets, enabling them to survive on an extreme energy-constrained xylem-sap diet. The principles and limits of superpropulsion outlined here can inform designs of energy-efficient self-cleaning structures and soft engines to generate ballistic motions. 
    more » « less
  5. Synopsis Many organisms exhibit collecting and gathering behaviors as a foraging and survival method. Benthic macroinvertebrates are classified as collector–gatherers due to their collection of particulate matter. Among these, the aquatic oligochaete Lumbriculus variegatus (California blackworms) demonstrates the ability to ingest both organic and inorganic materials, including microplastics. However, earlier studies have only qualitatively described their collecting behaviors for such materials. The mechanism by which blackworms consolidate discrete particles into a larger clump remains unexplored quantitatively. In this study, we analyze a group of blackworms in a large arena with an aqueous algae solution (organic particles) and find that their relative collecting efficiency is proportional to population size. We found that doubling the population size (N = 25–N = 50) results in a decrease in time to reach consolidation by more than half. Microscopic examination of individual blackworms reveals that both algae and microplastics physically adhere to the worm’s body and form clumps due to external mucus secretions by the worms. Our observations also indicate that this clumping behavior reduces the worm’s exploration of its environment, possibly due to thigmotaxis. To validate these observed biophysical mechanisms, we create an active polymer model of a worm moving in a field of particulate debris. We simulate its adhesive nature by implementing a short-range attraction between the worm and the nearest surrounding particles. Our findings indicate an increase in gathering efficiency when we add an attractive force between particles, simulating the worm’s mucosal secretions. Our work provides a detailed understanding of the complex mechanisms underlying the collecting–gathering behavior in L. variegatus, informing the design of bioinspired synthetic collector systems, and advances our understanding of the ecological impacts of microplastics on benthic invertebrates. 
    more » « less
  6. Abstract Many organisms utilize group aggregation as a method for survival. The freshwater oligochaete, Lumbriculus variegatus (California blackworms) form tightly entangled structures, or worm “blobs”, that have adapted to survive in extremely low levels of dissolved oxygen (DO). Individual blackworms adapt to hypoxic environments through respiration via their mucous body wall and posterior ciliated hindgut, which they wave above them. However, the change in collective behavior at different levels of DO is not known. Using a closed-loop respirometer with flow, we discover that the relative tail reaching activity flux in low DO is ∼75x higher than in the high-DO condition. Additionally, when flow rate is increased to suspend the worm blobs upward, we find that the average exposed surface area of a blob in low DO is ∼1.4x higher than in high DO. Furthermore, we observe emergent properties that arise when a worm blob is exposed to extreme DO levels. We demonstrate that internal mechanical stress is generated when worm blobs are exposed to high DO levels, allowing them to be physically lifted off from the bottom of a conical container using a serrated endpiece. Our results demonstrate how both collective behavior and the emergent generation of internal mechanical stress in worm blobs change to accommodate differing levels of oxygen. From an engineering perspective, this could be used to model and simulate swarm robots, self-assembly structures, or soft material entanglements. 
    more » « less
  7. Synopsis We develop a model of latch-mediated spring actuated (LaMSA) systems relevant to comparative biomechanics and bioinspired design. The model contains five components: two motors (muscles), a spring, a latch, and a load mass. One motor loads the spring to store elastic energy and the second motor subsequently removes the latch, which releases the spring and causes movement of the load mass. We develop freely available software to accompany the model, which provides an extensible framework for simulating LaMSA systems. Output from the simulation includes information from the loading and release phases of motion, which can be used to calculate kinematic performance metrics that are important for biomechanical function. In parallel, we simulate a comparable, directly actuated system that uses the same motor and mass combinations as the LaMSA simulations. By rapidly iterating through biologically relevant input parameters to the model, simulated kinematic performance differences between LaMSA and directly actuated systems can be used to explore the evolutionary dynamics of biological LaMSA systems and uncover design principles for bioinspired LaMSA systems. As proof of principle of this concept, we compare a LaMSA simulation to a directly actuated simulation that includes either a Hill-type force-velocity trade-off or muscle activation dynamics, or both. For the biologically-relevant range of parameters explored, we find that the muscle force-velocity trade-off and muscle activation have similar effects on directly actuated performance. Including both of these dynamic muscle properties increases the accelerated mass range where a LaMSA system outperforms a directly actuated one. 
    more » « less
  8. Flamingos feature one of the most sophisticated filter-feeding systems among birds, characterized by upside-down feeding, comb-like lamellae, and a piston-like tongue. However, the hydrodynamic functions of their L-shaped chattering beak, S-curved neck, and distinct behaviors such as stomping and feeding against the flow remain a mystery. Combining live flamingo experiments with live brine shrimp and passive particles, bioinspired physical models, and 3D CFD simulations, we show that flamingos generate self-induced vortical traps using their heads, beaks, and feet to capture agile planktonic prey in harsh fluid environments. When retracting their heads rapidly (~40 cm/s), flamingos generate tornado-like vortices that stir up and upwell bottom sediments and live shrimp aided by their L-shaped beak. Remarkably, they also induce directional flows (~7 cm/s) through asymmetric beak chattering underwater (~12 Hz). Their morphing feet create horizontal eddies during stomping, lifting, and concentrating sediments and brine shrimp, while trapping fast-swimming invertebrates, as confirmed by using a 3D-printed morphing foot model. During interfacial skimming, flamingos produce a vortical recirculation zone at the beak’s tip, aiding in prey capture. Experiments using a flamingo-inspired particle collection system indicate that beak chattering improves capture rates by ~7×. These findings offer design principles for bioinspired particle collection systems that may be applied to remove pollutants and harmful microorganisms from water bodies. 
    more » « less
    Free, publicly-accessible full text available May 27, 2026
  9. The California blackworm,Lumbriculus variegatus, lives underwater and latches its tail to the water surface for respiration and stability. Little is known about the upward force generated by this posture. In this combined experimental and theoretical study, we visualize the menisci shape for blackworms and blackworm mimics, composed of smooth and corrugated epoxy rods. We apply previous theoretical models for floating cylinders to predict the upward force and safety factor of blackworms as well as other organisms such as mosquito larvae, leeches and aquatic snails. Understanding the upward forces of organisms that latch onto the water surface may help to understand the evolution of interfacial attachment and inspire biomimetic robots. 
    more » « less
    Free, publicly-accessible full text available May 16, 2026
  10. Entomopathogenic nematodes (EPNs) exhibit a bending-elastic instability, or kink, before becoming airborne, a feature previously hypothesized but not substantiated to enhance jumping performance. Here, we provide the evidence that this kink is crucial for improving launch performance. We demonstrate that EPNs actively modulate their aspect ratio, forming a liquid-latched α-shaped loop over a slow timescale O (1 second), and then rapidly open it O (10 microseconds), achieving heights of 20 body lengths and generating power of ∼104watts per kilogram. Using a bioinspired physical model [termed the soft jumping model (SoftJM)], we explored the mechanisms and implications of this kink. EPNs control their takeoff direction by adjusting their head position and center of mass, a mechanism verified through phase maps of jump directions in numerical simulations and SoftJM experiments. Our findings reveal that the reversible kink instability at the point of highest curvature on the ventral side enhances energy storage using the nematode’s limited muscular force. We investigated the effect of the aspect ratio on kink instability and jumping performance using SoftJM and quantified EPN cuticle stiffness with atomic force microscopy measurements, comparing these findings with those ofCaenorhabditis elegans. This investigation led to a stiffness-modified SoftJM design with a carbon fiber backbone, achieving jumps of ∼25 body lengths. Our study reveals how harnessing kink instabilities, a typical failure mode, enables bidirectional jumping in soft robots on complex substrates like sand, offering an approach for designing limbless robots for controlled jumping, locomotion, and even planetary exploration. 
    more » « less
    Free, publicly-accessible full text available April 23, 2026