skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of quiet-sun turbulence on the basis of SDO/HMI and goode solar telescope data
ABSTRACT We analysed line-of-sight magnetic fields and magnetic power spectra of an undisturbed photosphere using magnetograms acquired by the Helioseismic and Magnetic Imager (HMI) on-board the Solar Dynamic Observatory and the Near InfraRed Imaging Spectrapolarimeter (NIRIS) operating at the Goode Solar Telescope of the Big Bear Solar Observatory. In the NIRIS data, we revealed thin flux tubes of 200–400 km in diameter and of 1000–2000 G field strength. The HMI power spectra determined for a coronal hole, a quiet sun, and a plage areas exhibit the same spectral index of −1 on a broad range of spatial scales from 10–20 Mm down to 2.4 Mm. This implies that the same mechanism(s) of magnetic field generation operate everywhere in the undisturbed photosphere. The most plausible one is the local turbulent dynamo. When compared to the HMI spectra, the −1.2 slope of the NIRIS spectrum appears to be more extended into the short spatial range until the cut-off at 0.8–0.9 Mm, after which it continues with a steeper slope of −2.2. Comparison of the observed and Kolmogorov-type spectra allowed us to infer that the Kolmogorov turbulent cascade cannot account for more than 35 per cent of the total magnetic energy observed in the scale range of 3.5–0.3 Mm. The energy excess can be attributed to other mechanisms of field generation such as the local turbulent dynamo and magnetic superdiffusivity observed in an undisturbed photosphere that can slow down the rate of the Kolmogorov cascade leading to a shallower resulting spectrum.  more » « less
Award ID(s):
1821294
PAR ID:
10218215
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
497
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
5405 to 5412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.High-resolution magnetograms are crucial for studying solar flare dynamics because they enable the precise tracking of magnetic structures and rapid field changes. The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO/HMI) has been an essential provider of vector magnetograms. However, the spatial resolution of the HMI magnetograms is limited and hence is not able to capture the fine structures that are essential for understanding flare precursors. The Near InfraRed Imaging Spectropolarimeter on the 1.6 m Goode Solar Telescope (GST/NIRIS) at Big Bear Solar Observatory (BBSO) provides a better spatial resolution and is therefore more suitable to track the fine magnetic features and their connection to flare precursors. Aims.We propose DeepHMI, a machine-learning method for solar image super-resolution, to enhance the transverse and line-of-sight magnetograms of solar active regions (ARs) collected by SDO/HMI to better capture the fine-scale magnetic structures that are crucial for understanding solar flare dynamics. The enhanced HMI magnetograms can also be used to study spicules, sunspot light bridges and magnetic outbreaks, for which high-resolution data are essential. Methods.DeepHMI employs a conditional diffusion model that is trained using ground-truth images obtained by an inversion analysis of Stokes measurements collected by GST/NIRIS. Results.Our experiments show that DeepHMI performs better than the commonly used bicubic interpolation method in terms of four evaluation metrics. In addition, we demonstrate the ability of DeepHMI through a case study of the enhancement of SDO/HMI transverse and line-of-sight magnetograms of AR 12371 to GST/NIRIS data. 
    more » « less
  2. Observations of Type III radio bursts discovered that electron beams with power-law energy spectra are commonly produced during solar flares. The locations of these electron beams are ~ 300 Mm above the particle acceleration region of the photosphere, and the velocities range from 3 to 10 times the local background electron thermal velocity. However, the mechanism that can commonly produce electron beams during the propagation of energetic electrons with power-law energy spectra in the corona remains unclear. In this paper, using kinetic transport theory, we find for the first time that the magnetic focusing effect governs the formation of electron beams over the observational desired distance in the corona. The magnetic focusing effect can sharply increase the bulk velocity of energetic electrons to the observed electron beam velocity within 0.4 solar radii (300 Mm) as they escape from the acceleration region and propagate upward along magnetic field lines. In more rapidly decreasing magnetic fields, energetic electrons with a harder power-law energy spectrum can generate a higher bulk velocity, producing type III radio bursts at a location much closer to the acceleration region. During propagation, the spectral index of the energetic electrons is unchanged. 
    more » « less
  3. Abstract Observations of Type III radio bursts discovered that electron beams with power-law energy spectra are commonly produced during solar flares. The locations of these electron beams are ~ 300 Mm above the particle acceleration region of the photosphere, and the velocities range from 3 to 10 times the local background electron thermal velocity. However, the mechanism that can commonly produce electron beams during the propagation of energetic electrons with power-law energy spectra in the corona remains unclear. In this paper, using kinetic transport theory, we find for the first time that the magnetic focusing effect governs the formation of electron beams over the observational desired distance in the corona. The magnetic focusing effect can sharply increase the bulk velocity of energetic electrons to the observed electron beam velocity within 0.4 solar radii (300 Mm) as they escape from the acceleration region and propagate upward along magnetic field lines. In more rapidly decreasing magnetic fields, energetic electrons with a harder power-law energy spectrum can generate a higher bulk velocity, producing type III radio bursts at a location much closer to the acceleration region. During propagation, the spectral index of the energetic electrons is unchanged. 
    more » « less
  4. ABSTRACT Observational power spectra of the photospheric magnetic field turbulence, of the quiet-sun, were presented in a recent paper by Abramenko & Yurchyshyn. Here, I focus on the power spectrum derived from the observations of the Near InfraRed Imaging Spectrapolarimeter operating at the Goode Solar Telescope. The latter exhibits a transition from a power law with index −1.2 to a steeper power law with index −2.2, for smaller spatial scales. This paper presents an interpretation of this change. Furthermore, this interpretation provides an estimate for the effective width of the turbulent layer probed by the observations. The latter turns out to be practically equal to the depth of the photosphere. 
    more » « less
  5. Abstract Light bridges (LBs) are narrow structures dividing sunspot umbra, and their role in active region evolution is yet to be explored. We investigated the magnetic structure of the two LBs: a narrow LB (with width ∼810 km) and a considerably wider LB (2475 km) in the active region NOAA 12371. We employed: (1) the high-spatial-resolution spectropolarimetric data obtained by the Near InfraRed Imaging Spectropolarimeter (NIRIS) of the 1.6 m Goode Solar Telescope (GST) for studying the magnetic structure at the photosphere, and (2) the nonlinear force-free field (NLFFF) models, extrapolated from both the photospheric magnetogram from GST/NIRIS and from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, for studying the three-dimensional (3D) magnetic structure on a larger scale. Our observations reveal the presence of a field-free (or, more precisely, weak-field) region and the different velocity structures inside the two LBs. Analysis of the 3D NLFFF model shows a low-lying magnetic canopy as well as the enhanced current system above the LBs. The substantial difference between the LBs and the umbrae is found in the overall magnetic topology in that the field lines emanating from the two LBs are more twisted than that from the neighboring umbrae. 
    more » « less