Abstract Magnetic field plays an important role in various solar eruption phenomena. The formation and evolution of the characteristic magnetic field topology in solar eruptions are critical problems that will ultimately help us understand the origin of these eruptions in the solar source regions. With the development of advanced techniques and instruments, observations with higher resolutions in different wavelengths and fields of view have provided more quantitative information for finer structures. It is therefore essential to improve the method with which we study the magnetic field topology in the solar source regions by taking advantage of high-resolution observations. In this study, we employ a nonlinear force-free field extrapolation method based on a nonuniform grid setting for an M-class flare eruption event (SOL2015-06-22T17:39) with embedded vector magnetograms from the Solar Dynamics Observatory (SDO) and the Goode Solar Telescope (GST). The extrapolation results for which the nonuniform embedded magnetogram for the bottom boundary was employed are obtained by maintaining the native resolutions of the corresponding GST and SDO magnetograms. We compare the field line connectivity with the simultaneous GST/Hαand SDO/Atmospheric Imaging Assembly observations for these fine-scale structures, which are associated with precursor brightenings. Then we perform a topological analysis of the field line connectivity corresponding to fine-scale magnetic field structures based on the extrapolation results. The analysis results indicate that when we combine the high-resolution GST magnetogram with a larger magnetogram from the SDO, the derived magnetic field topology is consistent with a scenario of magnetic reconnection among sheared field lines across the main polarity inversion line during solar flare precursors.
more »
« less
This content will become publicly available on May 1, 2026
Improving the spatial resolution of SDO/HMI transverse and line-of-sight magnetograms using GST/NIRIS data with machine learning
Context.High-resolution magnetograms are crucial for studying solar flare dynamics because they enable the precise tracking of magnetic structures and rapid field changes. The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO/HMI) has been an essential provider of vector magnetograms. However, the spatial resolution of the HMI magnetograms is limited and hence is not able to capture the fine structures that are essential for understanding flare precursors. The Near InfraRed Imaging Spectropolarimeter on the 1.6 m Goode Solar Telescope (GST/NIRIS) at Big Bear Solar Observatory (BBSO) provides a better spatial resolution and is therefore more suitable to track the fine magnetic features and their connection to flare precursors. Aims.We propose DeepHMI, a machine-learning method for solar image super-resolution, to enhance the transverse and line-of-sight magnetograms of solar active regions (ARs) collected by SDO/HMI to better capture the fine-scale magnetic structures that are crucial for understanding solar flare dynamics. The enhanced HMI magnetograms can also be used to study spicules, sunspot light bridges and magnetic outbreaks, for which high-resolution data are essential. Methods.DeepHMI employs a conditional diffusion model that is trained using ground-truth images obtained by an inversion analysis of Stokes measurements collected by GST/NIRIS. Results.Our experiments show that DeepHMI performs better than the commonly used bicubic interpolation method in terms of four evaluation metrics. In addition, we demonstrate the ability of DeepHMI through a case study of the enhancement of SDO/HMI transverse and line-of-sight magnetograms of AR 12371 to GST/NIRIS data.
more »
« less
- PAR ID:
- 10598772
- Publisher / Repository:
- EDP Sciences
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 697
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A110
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Improving spatial resolution of sunspot HMI images using conditional generative adversarial networksSolar Dynamics Observatory (SDO) spacecraft as a space-based project is able to conduct continuous monitoring of the Sun. The Helioseismic and Magnetic Imager (HMI) instrument on SDO, in particular, provides continuum images and magnetograms with a cadence of under 1 minute. SDO/HMI's spatial resolution is only about 1'', which makes it impossible to perform a good analysis on the subarcsecond scale. On the other hand, larger aperture ground-based telescopes such as the Goode Solar Telescope (GST) at the Big Bear Solar Observatory are able to achieve a better resolution (16 times better than SDO/HMI). However, ground-based telescopes like GST have limitations in terms of observation time, which can only make observations during the day in clearsky condition. The purpose of this study is to make attempts in improving the spatial resolution of images captured by HMI beyond the diffraction limit of the telescope by employing the Conditional Generative Adversarial Networks algorithm (cGAN). The cGAN model was trained using 1800 pairs of HMI and GST sunspot images. This method successfully reconstruct HMI images with a spatial resolution close to GST images, this is supported by \raisebox{-0.5ex}\textasciitilde62\% increase in the peak signal-to-noise ratio (PSNR) value and \raisebox{-0.5ex}\textasciitilde90\% decrease in the mean squared error (MSE) value. The higher resolution sunspot images produced by this model can be useful for further Solar Physics studies.more » « less
-
Magnetic polarity inversion lines (PILs) in solar active regions are key to triggering flares and eruptions. Recently, engineered PIL features have been used for predicting solar eruptions. Derived from the original PIL dataset, using line-of-sight (LoS) magnetograms provided by the Solar Dynamics Observatory's (SDO) Helioseismic and Magnetic Imager (HMI) Active Region Patches (HARPs), we provide a publicly available comprehensive dataset in a supervised format, where each instance includes a raster of Polarity Inversion Lines (PILs), one of the polarity convex hull, and a multivariate time-series of properties related to PILs. Using SDO-GOES integrated flares historical data covering May 2010 to January 2019, we have assigned each of the instances their corresponding class of flare, FQ, C, M or X. By integrating these diverse data modalities, our approach aims to improve the accuracy of solar flare predictions. Initial findings suggest that the multimodal approach can uncover new patterns and relationships, potentially leading to breakthroughs in predictive accuracy and more effective mitigation strategies against the impacts of solar activities.more » « less
-
Abstract Magnetic reconnection is regarded as the mechanism for the rapid release of magnetic energy stored in active regions during solar flares, and quantitative measurements of the magnetic reconnection rate are essential for understanding solar flares. In the context of the standard two-ribbon flare model, we derive the coronal magnetic reconnection rate of the M6.5 flare on 2015 June 22 in two terms, reconnection flux change rate and reconnection electric field, both of which can be obtained from observations of the flare morphology. Data used include a sequence of chromospheric Hαimages with unprecedented resolution during the flare from the Visual Imaging Spectrometer of the Goode Solar Telescope (GST) at the Big Bear Solar Observatory and a preflare line-of-sight photospheric magnetogram from the GST Near-InfraRed Imaging Spectropolarimeter along with hard X-ray data from the Ramaty High Energy Solar Spectroscopic Imager. The temporal correlation between the magnetic reconnection rate and nonthermal emission is found, and the variation of the reconnection electric field is mainly determined by the ribbon speed, not by the local magnetic field encountered by the ribbon front. Spatially, the hard X-ray source overlaps with the location of the strongest electric field obtained at the same time. The ribbon motion shows abundant fine structures, including a local acceleration at the location of a light bridge with a weaker magnetic field.more » « less
-
Abstract Obtaining high-quality magnetic and velocity fields through Stokes inversion is crucial in solar physics. In this paper, we present a new deep learning method, named Stacked Deep Neural Networks (SDNN), for inferring line-of-sight (LOS) velocities and Doppler widths from Stokes profiles collected by the Near InfraRed Imaging Spectropolarimeter (NIRIS) on the 1.6 m Goode Solar Telescope (GST) at the Big Bear Solar Observatory (BBSO). The training data for SDNN are prepared by a Milne–Eddington (ME) inversion code used by BBSO. We quantitatively assess SDNN, comparing its inversion results with those obtained by the ME inversion code and related machine-learning (ML) algorithms such as multiple support vector regression, multilayer perceptrons, and a pixel-level convolutional neural network. Major findings from our experimental study are summarized as follows. First, the SDNN-inferred LOS velocities are highly correlated to the ME-calculated ones with the Pearson product–moment correlation coefficient being close to 0.9 on average. Second, SDNN is faster, while producing smoother and cleaner LOS velocity and Doppler width maps, than the ME inversion code. Third, the maps produced by SDNN are closer to ME’s maps than those from the related ML algorithms, demonstrating that the learning capability of SDNN is better than those of the ML algorithms. Finally, a comparison between the inversion results of ME and SDNN based on GST/NIRIS and those from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory in flare-prolific active region NOAA 12673 is presented. We also discuss extensions of SDNN for inferring vector magnetic fields with empirical evaluation.more » « less
An official website of the United States government
