skip to main content


Title: Inference of chromospheric plasma parameters on the Sun: Multilayer spectral inversion of strong absorption lines
The solar chromosphere can be observed well through strong absorption lines. We infer the physical parameters of chromospheric plasmas from these lines using a multilayer spectral inversion. This is a new technique of spectral inversion. We assume that the atmosphere consists of a finite number of layers. In each layer the absorption profile is constant and the source function varies with optical depth with a constant gradient. Specifically, we consider a three-layer model of radiative transfer where the lowest layer is identified with the photosphere and the two upper layers are identified with the chromosphere. The absorption profile in the photosphere is described by a Voigt function, and the profile in the chromosphere by a Gaussian function. This three-layer model is fully specified by 13 parameters. Four parameters can be fixed to prescribed values, and one parameter can be determined from the analysis of a satellite photospheric line. The remaining 8 parameters are determined from a constrained least-squares fitting. We applied the multilayer spectral inversion to the spectral data of the H α and the Ca  II 854.21 nm lines taken in a quiet region by the Fast Imaging Solar Spectrograph (FISS) of the Goode Solar Telescope (GST). We find that our model successfully fits most of the observed profiles and produces regular maps of the model parameters. The combination of the inferred Doppler widths of the two lines yields reasonable estimates of temperature and nonthermal speed in the chromosphere. We conclude that our multilayer inversion is useful to infer chromospheric plasma parameters on the Sun.  more » « less
Award ID(s):
1821294
NSF-PAR ID:
10218220
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
640
ISSN:
0004-6361
Page Range / eLocation ID:
A45
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A multilayer spectral inversion (MLSI) model has recently been proposed for inferring the physical parameters of plasmas in the solar chromosphere from strong absorption lines taken by the Fast Imaging Solar Spectrograph (FISS). We apply a deep neural network (DNN) technique in order to produce the MLSI outputs with reduced computational costs. We train the model using two absorption lines, H α and Ca ii 8542 Å, taken by FISS, and 13 physical parameters obtained from the application of MLSI to 49 raster scans (∼2,000,000 spectra). We use a fully connected network with skip connections and multi-branch architecture to avoid the problem of vanishing gradients and to improve the model’s performance. Our test shows that the DNN successfully reproduces the physical parameters for each line with high accuracy and a computing time of about 0.3–0.4 ms per line, which is about 250 times faster than the direct application of MLSI. We also confirm that the DNN reliably reproduces the temporal variations of the physical parameters generated by the MLSI inversion. By taking advantage of the high performance of the DNN, we plan to provide physical parameter maps for all the FISS observations, in order to understand the chromospheric plasma conditions in various solar features. 
    more » « less
  2. Abstract

    During solar flares, spectral lines formed in the photosphere have been shown to exhibit changes to their profiles despite the challenges of energy transfer to these depths. Recent work has shown that deep-forming spectral lines are subject to significant contributions from regions above the photosphere throughout the flaring period, resulting in a composite emergent intensity profile from multiple layers of the atmosphere. We employ radiative–hydrodynamic and radiative transfer calculations to simulate the response of the solar/stellar atmosphere to electron beam heating and synthesize spectral lines of Feito investigate the line-of-sight velocity fields information available from Doppler shifts of the emergent intensity profile. By utilizing the contribution function to deconstruct the line profile shape into its constituent sources, we show that variations in the line profiles are primarily caused by changes in the chromosphere. Up-flows in this region were found to create blueshifts orfalseredshifts in the line core dependent on the relative contribution of the chromosphere compared to the photosphere. In extreme solar and stellar flare scenarios featuring explosive chromospheric condensations, redshifted transient components can dominate the temporal evolution of the profile shape, requiring a tertiary component consideration to fully characterize. We conclude that deep-forming lines require a multicomponent understanding and treatment, with different regions of the spectral line being useful for probing individual regions of the atmosphere’s velocity flows.

     
    more » « less
  3. Abstract In this paper, we report the observed temporal correlation between extreme-ultraviolet (EUV) emission and magneto-acoustic oscillations in an EUV moss region, which is the footpoint region only connected by magnetic loops with million-degree plasma. The result is obtained from a detailed multi-wavelength data analysis of the region with the purpose of resolving fine-scale mass and energy flows that come from the photosphere, pass through the chromosphere and finally heat the solar transition region or the corona. The data set covers three atmospheric levels on the Sun, consisting of high-resolution broad-band imaging at TiO 7057 Å and the line of sight magnetograms for the photosphere, high-resolution narrow-band images at helium i 10830 Å for the chromosphere and EUV images at 171 Å for the corona. The 10830 Å narrow-band images and the TiO 7057 Å broad-band images are from a much earlier observation on 2012 July 22 with the 1.6 meter aperture Goode Solar Telescope (GST) at Big Bear Solar Observatory (BBSO) and the EUV 171 Å images and the magnetograms are from observations made by Atmospheric Imaging Assembly (AIA) or Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report the following new phenomena: (1) Repeated injections of chromospheric material appearing as 10830 Å absorption are squirted out from inter-granular lanes with a period of ∼ 5 minutes. (2) EUV emissions are found to be periodically modulated with similar periods of ∼ 5 minutes. (3) Around the injection area where 10830 Å absorption is enhanced, both EUV emissions and strength of the magnetic field are remarkably stronger. (4) The peaks on the time profile of the EUV emissions are found to be in sync with oscillatory peaks of the stronger magnetic field in the region. These findings may give a series of strong evidences supporting the scenario that coronal heating is powered by magneto-acoustic waves. 
    more » « less
  4. Context. Resistive Ohmic dissipation has been suggested as a mechanism for heating the solar chromosphere, but few studies have established this association. Aims. We aim to determine how Ohmic dissipation by electric currents can heat the solar chromosphere. Methods. We combine high-resolution spectroscopic Ca  II data from the Dunn Solar Telescope and vector magnetic field observations from the Helioseismic and Magnetic Imager (HMI) to investigate thermal enhancements in a sunspot light bridge. The photospheric magnetic field from HMI was extrapolated to the corona using a non-force-free field technique that provided the three-dimensional distribution of electric currents, while an inversion of the chromospheric Ca  II line with a local thermodynamic equilibrium and a nonlocal thermodynamic equilibrium spectral archive delivered the temperature stratifications from the photosphere to the chromosphere. Results. We find that the light bridge is a site of strong electric currents, of about 0.3 A m −2 at the bottom boundary, which extend to about 0.7 Mm while decreasing monotonically with height. These currents produce a chromospheric temperature excess of about 600−800 K relative to the umbra. Only the light bridge, where relatively weak and highly inclined magnetic fields emerge over a duration of 13 h, shows a spatial coincidence of thermal enhancements and electric currents. The temperature enhancements and the Cowling heating are primarily confined to a height range of 0.4−0.7 Mm above the light bridge. The corresponding increase in internal energy of 200 J m −3 can be supplied by the heating in about 10 min. Conclusions. Our results provide direct evidence for currents heating the lower solar chromosphere through Ohmic dissipation. 
    more » « less
  5. Abstract

    Spectral lines formed at lower atmospheric layers show peculiar profiles at the “leading edge” of ribbons during solar flares. In particular, increased absorption of the BBSO/GST Heiλ10830 line, as well as broad and centrally reversed profiles in the spectra of the Mgiiand Ciilines observed by the IRIS satellite, has been reported. In this work, we aim to understand the physical origin of such peculiar IRIS profiles, which seem to be common of many, if not all, flares. To achieve this, we quantify the spectral properties of the IRIS Mgiiprofiles at the ribbon leading edge during four large flares and perform a detailed comparison with a grid of radiative hydrodynamic models using theRADYN+FPcode. We also studied their transition region (TR) counterparts, finding that these ribbon front locations are regions where TR emission and chromospheric evaporation are considerably weaker compared to other parts of the ribbons. Based on our comparison between the IRIS observations and modeling, our interpretation is that there are different heating regimes at play in the leading edge and the main bright part of the ribbons. More specifically, we suggest that bombardment of the chromosphere by more gradual and modest nonthermal electron energy fluxes can qualitatively explain the IRIS observations at the ribbon leading front, while stronger and more impulsive energy fluxes are required to drive chromospheric evaporation and more intense TR emission in the bright ribbon. Our results provide a possible physical origin for the peculiar behavior of the IRIS chromospheric lines in the ribbon leading edge and new constraints for the flare models.

     
    more » « less