skip to main content

Title: Doppler shift oscillations of a sunspot detected by CYRA and IRIS
Context. The carbon monoxide (CO) molecular line at around 46655 Å in solar infrared spectra is often used to investigate the dynamic behavior of the cold heart of the solar atmosphere, i.e., sunspot oscillation, especially at the sunspot umbra. Aims. We investigated sunspot oscillation at Doppler velocities of the CO 7-6 R67 and 3-2 R14 lines that were measured by the Cryogenic Infrared Spectrograph (CYRA), as well as the line profile of Mg  II k line that was detected by the Interface Region Imaging Spectrograph (IRIS). Methods. A single Gaussian function is applied to each CO line profile to extract the line shift, while the moment analysis method is used for the Mg  II k line. Then the sunspot oscillation can be found in the time–distance image of Doppler velocities, and the quasi-periodicity at the sunspot umbra are determined from the wavelet power spectrum. Finally, the cross-correlation method is used to analyze the phase relation between different atmospheric levels. Results. At the sunspot umbra, a periodicity of roughly 5 min is detected at the Doppler velocity range of the CO 7-6 R67 line that formed in the photosphere, while a periodicity of around 3 min is discovered at the Doppler more » velocities of CO 3-2 R14 and Mg  II k lines that formed in the upper photosphere or the temperature minimum region and the chromosphere. A time delay of about 2 min is measured between the strong CO 3-2 R14 line and the Mg  II k line. Conclusions. Based on the spectroscopic observations from the CYRA and IRIS, the 3 min sunspot oscillation can be spatially resolved in the Doppler shifts. It may come from the upper photosphere or the temperature minimum region and then propagate to the chromosphere, which might be regarded as a propagating slow magnetoacoustic wave. « less
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Astronomy & Astrophysics
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. Resistive Ohmic dissipation has been suggested as a mechanism for heating the solar chromosphere, but few studies have established this association. Aims. We aim to determine how Ohmic dissipation by electric currents can heat the solar chromosphere. Methods. We combine high-resolution spectroscopic Ca  II data from the Dunn Solar Telescope and vector magnetic field observations from the Helioseismic and Magnetic Imager (HMI) to investigate thermal enhancements in a sunspot light bridge. The photospheric magnetic field from HMI was extrapolated to the corona using a non-force-free field technique that provided the three-dimensional distribution of electric currents, while an inversion ofmore »the chromospheric Ca  II line with a local thermodynamic equilibrium and a nonlocal thermodynamic equilibrium spectral archive delivered the temperature stratifications from the photosphere to the chromosphere. Results. We find that the light bridge is a site of strong electric currents, of about 0.3 A m −2 at the bottom boundary, which extend to about 0.7 Mm while decreasing monotonically with height. These currents produce a chromospheric temperature excess of about 600−800 K relative to the umbra. Only the light bridge, where relatively weak and highly inclined magnetic fields emerge over a duration of 13 h, shows a spatial coincidence of thermal enhancements and electric currents. The temperature enhancements and the Cowling heating are primarily confined to a height range of 0.4−0.7 Mm above the light bridge. The corresponding increase in internal energy of 200 J m −3 can be supplied by the heating in about 10 min. Conclusions. Our results provide direct evidence for currents heating the lower solar chromosphere through Ohmic dissipation.« less
  2. The solar chromosphere can be observed well through strong absorption lines. We infer the physical parameters of chromospheric plasmas from these lines using a multilayer spectral inversion. This is a new technique of spectral inversion. We assume that the atmosphere consists of a finite number of layers. In each layer the absorption profile is constant and the source function varies with optical depth with a constant gradient. Specifically, we consider a three-layer model of radiative transfer where the lowest layer is identified with the photosphere and the two upper layers are identified with the chromosphere. The absorption profile in themore »photosphere is described by a Voigt function, and the profile in the chromosphere by a Gaussian function. This three-layer model is fully specified by 13 parameters. Four parameters can be fixed to prescribed values, and one parameter can be determined from the analysis of a satellite photospheric line. The remaining 8 parameters are determined from a constrained least-squares fitting. We applied the multilayer spectral inversion to the spectral data of the H α and the Ca  II 854.21 nm lines taken in a quiet region by the Fast Imaging Solar Spectrograph (FISS) of the Goode Solar Telescope (GST). We find that our model successfully fits most of the observed profiles and produces regular maps of the model parameters. The combination of the inferred Doppler widths of the two lines yields reasonable estimates of temperature and nonthermal speed in the chromosphere. We conclude that our multilayer inversion is useful to infer chromospheric plasma parameters on the Sun.« less
  3. Abstract Waves and oscillations are important solar phenomena, not only because they can propagate and dissipate energy in the chromosphere, but also because they carry information about the structure of the atmosphere in which they propagate. The nature of the 3 minute oscillations observed in the umbral region of sunspots is considered to be an effect of propagation of magnetohydrodynamic waves upward from below the photosphere. We present a study of sunspot oscillations and wave propagation in NOAA Active Region 12470 using an approximately 1 hr long data set acquired on 2015 December 17 by the Atacama Large Millimeter/submillimeter Arraymore »(ALMA), the Goode Solar Telescope (GST) operating at the Big Bear Solar Observatory, the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, and the Interface Region Imaging Spectrograph. The ALMA data are unique in providing a time series of direct temperature measurements in the sunspot chromosphere. The 2 s cadence of ALMA images allows us to well resolve the 3 minute periods typical of sunspot oscillations in the chromosphere. Fourier analysis is applied to ALMA Band 3 (∼100 GHz, ∼3 mm) and GST H α data sets to obtain power spectra as well as oscillation phase information. We analyzed properties of the wave propagation by combining multiple wavelengths that probe physical parameters of solar atmosphere at different heights. We find that the ALMA temperature fluctuations are consistent with that expected for a propagating acoustic wave, with a slight asymmetry indicating nonlinear steepening.« less
  4. The Sun has a well-known periodicity in sunspot number and magnetic field variation. The underlying cause of this 11-year cycle is not fully understood and has yet to be connected with those processes in other stellar objects. The Full-sun Ultraviolet Rocket SpecTrograph (FURST) is a sounding rocket payload being developed by Montana State University (MSU) alongside the Marshall Space Flight Center (MSFC) solar physics group. Scheduled to launch from White Sands Missile Range (WSMR) in 2022, this instrument is unique in that it will provide the connection between stellar observatories with measurements of our Sun. It will achieve this throughmore »measuring high-resolution full-disk spectral irradiance. We aim to obtain a wavelength resolution R > 10,000 in the 120 - 181 nm UltraViolet (UV) range, on par with that of the Hubble (HST) Space Telescope Imaging Spectrograph (STIS). This resolution goal will allow us to study the relatively low-temperature plasma in the chromosphere and lower corona with spectral accuracy down to 0.1 Å (a Doppler-shift of about ± 30 km/s). In addition, the Lyman Alpha (121 nm) line is known to saturate most CCD electronics. These factors illustrate the particular challenge of precise wavelength calibration for this spectral range. We are building a collimator in order to calibrate the FURST instrument under these strict spectral requirements. This paper will present the results of our simulation of the diagnostic lamp signal to be used for wavelength calibration. The simulation allows us to begin to account for photon noise, electronic readout noise, and statistical error. These in turn lead to the development of our pre- and post-launch calibration plans. Future work includes absolute radiometric and wavelength calibration with this new collimator. In addition, the ability of FURST to measure small Doppler-shifts will provide capabilities for planetary atmospheric scientists. This impact is coupled with the diverse international partnership created by the closely-knit Sounding Rocket teams around the globe. Sounding Rockets like FURST have an even broader impact, as they encourage future satellite missions under the prospect of long-term observations.« less
  5. Abstract This study presents a C3.0 flare observed by the Big Bear Solar Observatory/Goode Solar Telescope (GST) and Interface Region Imaging Spectrograph (IRIS) on 2018 May 28 around 17:10 UT. The Near-Infrared Imaging Spectropolarimeter of GST was set to spectral imaging mode to scan five spectral positions at ±0.8, ±0.4 Å and line center of He i 10830 Å. At the flare ribbon’s leading edge, the line is observed to undergo enhanced absorption, while the rest of the ribbon is observed to be in emission. When in emission, the contrast compared to the preflare ranges from about 30% to nearlymore »100% at different spectral positions. Two types of spectra, “convex” shape with higher intensity at line core and “concave” shape with higher emission in the line wings, are found at the trailing and peak flaring areas, respectively. On the ribbon front, negative contrasts, or enhanced absorption, of about ∼10%–20% appear in all five wavelengths. This observation strongly suggests that the negative flares observed in He i 10830 Å with mono-filtergram previously were not caused by pure Doppler shifts of this spectral line. Instead, the enhanced absorption appears to be a consequence of flare-energy injection, namely nonthermal collisional ionization of helium caused by the precipitation of high-energy electrons, as found in our recent numerical modeling results. In addition, though not strictly simultaneous, observations of Mg ii from the IRIS spacecraft, show an obvious central reversal pattern at the locations where enhanced absorption of He i 10830 Å is seen, which is consistent with previous observations.« less