skip to main content


Title: The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA)
ABSTRACT To explore the various couplings across space and time and between ecosystems in a consistent manner, atmospheric modeling is moving away from the fractured limited-scale modeling strategy of the past toward a unification of the range of scales inherent in the Earth system. This paper describes the forward-looking Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA), which is intended to become the next-generation community infrastructure for research involving atmospheric chemistry and aerosols. MUSICA will be developed collaboratively by the National Center for Atmospheric Research (NCAR) and university and government researchers, with the goal of serving the international research and applications communities. The capability of unifying various spatiotemporal scales, coupling to other Earth system components, and process-level modularization will allow advances in both fundamental and applied research in atmospheric composition, air quality, and climate and is also envisioned to become a platform that addresses the needs of policy makers and stakeholders.  more » « less
Award ID(s):
1914903 1914920
NSF-PAR ID:
10218241
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
Volume:
101
Issue:
10
ISSN:
0003-0007
Page Range / eLocation ID:
E1743 to E1760
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Emissions are a central component of atmosphericchemistry models. The Harmonized Emissions Component (HEMCO) is a softwarecomponent for computing emissions from a user-selected ensemble of emissioninventories and algorithms. It allows users to re-grid, combine, overwrite,subset, and scale emissions from different inventories through aconfiguration file and with no change to the model source code. Theconfiguration file also maps emissions to model species with appropriateunits. HEMCO can operate in offline stand-alone mode, but more importantlyit provides an online facility for models to compute emissions at runtime.HEMCO complies with the Earth System Modeling Framework (ESMF) forportability across models. We present a new version here, HEMCO 3.0, thatfeatures an improved three-layer architecture to facilitate implementationinto any atmospheric model and improved capability for calculatingemissions at any model resolution including multiscale and unstructuredgrids. The three-layer architecture of HEMCO 3.0 includes (1) the Data InputLayer that reads the configuration file and accesses the HEMCO library ofemission inventories and other environmental data, (2) the HEMCO Core thatcomputes emissions on the user-selected HEMCO grid, and (3) the ModelInterface Layer that re-grids (if needed) and serves the data to theatmospheric model and also serves model data to the HEMCO Core forcomputing emissions dependent on model state (such as from dust or vegetation). The HEMCO Core is common to the implementation in all models, whilethe Data Input Layer and the Model Interface Layer are adaptable to themodel environment. Default versions of the Data Input Layer and ModelInterface Layer enable straightforward implementation of HEMCO in any simplemodel architecture, and options are available to disable features such asre-gridding that may be done by independent couplers in more complexarchitectures. The HEMCO library of emission inventories and algorithms iscontinuously enriched through user contributions so that new inventoriescan be immediately shared across models. HEMCO can also serve as a generaldata broker for models to process input data not only for emissions but forany gridded environmental datasets. We describe existing implementations ofHEMCO 3.0 in (1) the GEOS-Chem “Classic” chemical transport model withshared-memory infrastructure, (2) the high-performance GEOS-Chem (GCHP)model with distributed-memory architecture, (3) the NASA GEOS Earth SystemModel (GEOS ESM), (4) the Weather Research and Forecasting model withGEOS-Chem (WRF-GC), (5) the Community Earth System Model Version 2 (CESM2),and (6) the NOAA Global Ensemble Forecast System – Aerosols(GEFS-Aerosols), as well as the planned implementation in the NOAA Unified ForecastSystem (UFS). Implementation of HEMCO in CESM2 contributes to theMulti-Scale Infrastructure for Chemistry and Aerosols (MUSICA) by providinga common emissions infrastructure to support different simulations ofatmospheric chemistry across scales. 
    more » « less
  2. Abstract. We implement the GEOS-Chem chemistry module as a chemical mechanism in version 2 of the Community Earth System Model (CESM). Our implementation allowsthe state-of-the-science GEOS-Chem chemistry module to be used with identical emissions, meteorology, and climate feedbacks as the CAM-chemchemistry module within CESM. We use coupling interfaces to allow GEOS-Chem to operate almost unchanged within CESM. Aerosols are converted at eachtime step between the GEOS-Chem bulk representation and the size-resolved representation of CESM's Modal Aerosol Model (MAM4). Land-type informationneeded for dry-deposition calculations in GEOS-Chem is communicated through a coupler, allowing online land–atmosphere interactions. Wet scavengingin GEOS-Chem is replaced with the Neu and Prather scheme, and a common emissions approach is developed for both CAM-chem and GEOS-Chem in CESM. We compare how GEOS-Chem embedded in CESM (C-GC) compares to the existing CAM-chem chemistry option (C-CC) when used to simulate atmosphericchemistry in 2016, with identical meteorology and emissions. We compare the atmospheric composition and deposition tendencies between the twosimulations and evaluate the residual differences between C-GC and its use as a stand-alone chemistry transport model in the GEOS-Chem HighPerformance configuration (S-GC). We find that stratospheric ozone agrees well between the three models, with differences of less than 10 % inthe core of the ozone layer, but that ozone in the troposphere is generally lower in C-GC than in either C-CC or S-GC. This is likely due to greatertropospheric concentrations of bromine, although other factors such as water vapor may contribute to lesser or greater extents depending on theregion. This difference in tropospheric ozone is not uniform, with tropospheric ozone in C-GC being 30 % lower in the Southern Hemisphere whencompared with S-GC but within 10 % in the Northern Hemisphere. This suggests differences in the effects of anthropogenic emissions. Aerosolconcentrations in C-GC agree with those in S-GC at low altitudes in the tropics but are over 100 % greater in the upper troposphere due todifferences in the representation of convective scavenging. We also find that water vapor concentrations vary substantially between the stand-aloneand CESM-implemented version of GEOS-Chem, as the simulated hydrological cycle in CESM diverges from that represented in the source NASA Modern-Era Retrospective analysis for Research and Applications (Version 2; MERRA-2)reanalysis meteorology which is used directly in the GEOS-Chem chemistrytransport model (CTM). Our implementation of GEOS-Chem as a chemistry option in CESM (including full chemistry–climate feedback) is publicly available and is beingconsidered for inclusion in the CESM main code repository. This work is a significant step in the MUlti-Scale Infrastructure for Chemistry andAerosols (MUSICA) project, enabling two communities of atmospheric researchers (CESM and GEOS-Chem) to share expertise through a common modelingframework, thereby accelerating progress in atmospheric science. 
    more » « less
  3. Abstract

    Model intercomparison studies often report a large spread in simulation results, but quantifying the causes of these differences is hindered by the fact that several processes contribute to the model spread simultaneously. Here we use the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) version 0 to investigate the model resolution dependencies of simulated chemical species, with a focus on the differences between global uniform grid and regional refinement grid simulations with the same modeling framework. We construct two global (ne30 [∼112 km] and ne60 [∼56 km]) and two regional refinement grids over Korea (ne30x8 [∼14 km] and ne30x16 [∼7 km]). The grid resolution can change chemical concentrations by an order of magnitude in the boundary layer, and the importance increases as the species' reactivity increases (e.g., up to 50% and 1,000% changes for ethane and xylenes, respectively). The diurnal cycle of oxidants (OH, O3, and NO3) also varies with the grid resolution, which leads to different oxidation pathways of volatile organic compounds (e.g., the fraction of monoterpenes reacting with NO3in Seoul around midnight is 90% for ne30, but 65% for ne30x16). The models with high‐resolution grids usually do a better job at reproducing aircraft observations during the KORUS‐AQ campaign, but not always, implying compensating errors in the coarse grid simulations. For example, ozone is better reproduced by the coarse grid due to the artificial mixing of NOx. When developing new chemical mechanisms and evaluating models over urban areas, the uncertainties associated with model resolution should be considered.

     
    more » « less
  4. Abstract

    We analyze the effects of the diurnal cycle of fire emissions (DCFE) and plume rise on U.S. air quality using the MUSICAv0 (Multi‐Scale Infrastructure for Chemistry and Aerosols Version 0) model during the FIREX‐AQ (Fire Influence on Regional to Global Environments and Air Quality) and WE‐CAN (Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen) field campaigns. To include DCFE in the model, we employ two approaches: a DCFE climatology and DCFE derived from a satellite fire radiative power product. We also implemented two sets of plume‐rise climatologies, and two plume‐rise parameterizations. We evaluate the model performance with airborne measurements, U.S. EPA Air Quality System surface measurements, and satellite products. Overall, including plume rise improves model agreement with observations such as aircraft observations of CO and NOxfor FIREX‐AQ and WE‐CAN. Applying DCFE also improves model performance, such as for surface PM2.5in fire‐impacted regions. The impact of plume rise is larger than the impact of DCFE. Plume rise can greatly enhance modeled long‐range transport of fire‐emitted pollutants. The simulations with plume‐rise parameterizations generally perform better than the simulations with plume‐rise climatologies during FIREX‐AQ, but not for WE‐CAN. The 2019 Williams Flats Fire case study demonstrates that DCFE and plume rise change fire impacts because fire emissions are subject to different meteorology and chemistry when emitted at different times of a day and altitudes. Moreover, DCFE and plume rise also impact local‐to‐regional meteorology and chemical reaction rates. DCFE and plume rise will be included in future MUSICA versions.

     
    more » « less
  5. Abstract

    A new configuration of the Community Earth System Model (CESM)/Community Atmosphere Model with full chemistry (CAM‐chem) supporting the capability of horizontal mesh refinement through the use of the spectral element (SE) dynamical core is developed and called CESM/CAM‐chem‐SE. Horizontal mesh refinement in CESM/CAM‐chem‐SE is unique and novel in that pollutants such as ozone are accurately represented at human exposure relevant scales while also directly including global feedbacks. CESM/CAM‐chem‐SE with mesh refinement down to ∼14 km over the conterminous US (CONUS) is the beginning of the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICAv0). Here, MUSICAv0 is evaluated and used to better understand how horizontal resolution and chemical complexity impact ozone and ozone precursors over CONUS as compared to measurements from five aircraft campaigns, which occurred in 2013. This field campaign analysis demonstrates the importance of using finer horizontal resolution to accurately simulate ozone precursors such as nitrogen oxides and carbon monoxide. In general, the impact of using more complex chemistry on ozone and other oxidation products is more pronounced when using finer horizontal resolution where a larger number of chemical regimes are resolved. Large model biases for ozone near the surface remain in the Southeast US as compared to the aircraft observations even with updated chemistry and finer horizontal resolution. This suggests a need for adding the capability of replacing sections of global emission inventories with regional inventories, increasing the vertical resolution in the planetary boundary layer, and reducing model biases in meteorological variables such as temperature and clouds.

     
    more » « less