skip to main content


Title: Linking Personally Identifiable Information from the Dark Web to the Surface Web: A Deep Entity Resolution Approach
The information privacy of the Internet users has become a major societal concern. The rapid growth of online services increases the risk of unauthorized access to Personally Identifiable Information (PII) of at-risk populations, who are unaware of their PII exposure. To proactively identify online at-risk populations and increase their privacy awareness, it is crucial to conduct a holistic privacy risk assessment across the internet. Current privacy risk assessment studies are limited to a single platform within either the surface web or the dark web. A comprehensive privacy risk assessment requires matching exposed PII on heterogeneous online platforms across the surface web and the dark web. However, due to the incompleteness and inaccuracy of PII records in each platform, linking the exposed PII to users is a non-trivial task. While Entity Resolution (ER) techniques can be used to facilitate this task, they often require ad-hoc, manual rule development and feature engineering. Recently, Deep Learning (DL)-based ER has outperformed manual entity matching rules by automatically extracting prominent features from incomplete or inaccurate records. In this study, we enhance the existing privacy risk assessment with a DL-based ER method, namely Multi-Context Attention (MCA), to comprehensively evaluate individuals’ PII exposure across the different online platforms in the dark web and surface web. Evaluation against benchmark ER models indicates the efficacy of MCA. Using MCA on a random sample of data breach victims in the dark web, we are able to identify 4.3% of the victims on the surface web platforms and calculate their privacy risk scores.  more » « less
Award ID(s):
1719477 1936370
NSF-PAR ID:
10218323
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
International Conference on Data Mining Workshops (ICDMW)
Page Range / eLocation ID:
488 to 495
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Social networks such as Twitter offer the clinical research community a novel opportunity for engaging potential study participants based on user activity data. However, the availability of public social media data has led to new ethical challenges about respecting user privacy and the appropriateness of monitoring social media for clinical trial recruitment. Researchers have voiced the need for involving users’ perspectives in the development of ethical norms and regulations. Objective This study examined the attitudes and level of concern among Twitter users and nonusers about using Twitter for monitoring social media users and their conversations to recruit potential clinical trial participants. Methods We used two online methods for recruiting study participants: the open survey was (1) advertised on Twitter between May 23 and June 8, 2017, and (2) deployed on TurkPrime, a crowdsourcing data acquisition platform, between May 23 and June 8, 2017. Eligible participants were adults, 18 years of age or older, who lived in the United States. People with and without Twitter accounts were included in the study. Results While nearly half the respondents—on Twitter (94/603, 15.6%) and on TurkPrime (509/603, 84.4%)—indicated agreement that social media monitoring constitutes a form of eavesdropping that invades their privacy, over one-third disagreed and nearly 1 in 5 had no opinion. A chi-square test revealed a positive relationship between respondents’ general privacy concern and their average concern about Internet research (P<.005). We found associations between respondents’ Twitter literacy and their concerns about the ability for researchers to monitor their Twitter activity for clinical trial recruitment (P=.001) and whether they consider Twitter monitoring for clinical trial recruitment as eavesdropping (P<.001) and an invasion of privacy (P=.003). As Twitter literacy increased, so did people’s concerns about researchers monitoring Twitter activity. Our data support the previously suggested use of the nonexceptionalist methodology for assessing social media in research, insofar as social media-based recruitment does not need to be considered exceptional and, for most, it is considered preferable to traditional in-person interventions at physical clinics. The expressed attitudes were highly contextual, depending on factors such as the type of disease or health topic (eg, HIV/AIDS vs obesity vs smoking), the entity or person monitoring users on Twitter, and the monitored information. Conclusions The data and findings from this study contribute to the critical dialogue with the public about the use of social media in clinical research. The findings suggest that most users do not think that monitoring Twitter for clinical trial recruitment constitutes inappropriate surveillance or a violation of privacy. However, researchers should remain mindful that some participants might find social media monitoring problematic when connected with certain conditions or health topics. Further research should isolate factors that influence the level of concern among social media users across platforms and populations and inform the development of more clear and consistent guidelines. 
    more » « less
  2. Black hat hackers use malicious exploits to circumvent security controls and take advantage of system vulnerabilities worldwide, costing the global economy over $450 billion annually. While many organizations are increasingly turning to cyber threat intelligence (CTI) to help prioritize their vulnerabilities, extant CTI processes are often criticized as being reactive to known exploits. One promising data source that can help develop proactive CTI is the vast and ever-evolving Dark Web. In this study, we adopted the computational design science paradigm to design a novel deep learning (DL)-based exploit-vulnerability attention deep structured semantic model (EVA-DSSM) that includes bidirectional processing and attention mechanisms to automatically link exploits from the Dark Web to vulnerabilities. We also devised a novel device vulnerability severity metric (DVSM) that incorporates the exploit post date and vulnerability severity to help cybersecurity professionals with their device prioritization and risk management efforts. We rigorously evaluated the EVA-DSSM against state-of-the-art non-DL and DL-based methods for short text matching on 52,590 exploit-vulnerability linkages across four testbeds: web application, remote, local, and denial of service. Results of these evaluations indicate that the proposed EVA-DSSM achieves precision at 1 scores 20% - 41% higher than non-DL approaches and 4% - 10% higher than DL-based approaches. We demonstrated the EVA-DSSM’s and DVSM’s practical utility with two CTI case studies: openly accessible systems in the top eight U.S. hospitals and over 20,000 Supervisory Control and Data Acquisition (SCADA) systems worldwide. A complementary user evaluation of the case study results indicated that 45 cybersecurity professionals found the EVA-DSSM and DVSM results more useful for exploit-vulnerability linking and risk prioritization activities than those produced by prevailing approaches. Given the rising cost of cyberattacks, the EVA-DSSM and DVSM have important implications for analysts in security operations centers, incident response teams, and cybersecurity vendors. 
    more » « less
  3. Black hat hackers use malicious exploits to circumvent security controls and take advantage of system vulnerabilities worldwide, costing the global economy over $450 billion annually. While many organizations are increasingly turning to cyber threat intelligence (CTI) to help prioritize their vulnerabilities, extant CTI processes are often criticized as being reactive to known exploits. One promising data source that can help develop proactive CTI is the vast and ever-evolving Dark Web. In this study, we adopted the computational design science paradigm to design a novel deep learning (DL)-based exploit-vulnerability attention deep structured semantic model (EVA-DSSM) that includes bidirectional processing and attention mechanisms to automatically link exploits from the Dark Web to vulnerabilities. We also devised a novel device vulnerability severity metric (DVSM) that incorporates the exploit post date and vulnerability severity to help cybersecurity professionals with their device prioritization and risk management efforts. We rigorously evaluated the EVA-DSSM against state-of-the-art non-DL and DL-based methods for short text matching on 52,590 exploit-vulnerability linkages across four testbeds: web application, remote, local, and denial of service. Results of these evaluations indicate that the proposed EVA-DSSM achieves precision at 1 scores 20%-41% higher than non-DL approaches and 4%-10% higher than DL-based approaches. We demonstrated the EVA-DSSM's and DVSM's practical utility with two CTI case studies: openly accessible systems in the top eight U.S. hospitals and over 20,000 Supervisory Control and Data Acquisition (SCADA) systems worldwide. A complementary user evaluation of the case study results indicated that 45 cybersecurity professionals found the EVA-DSSM and DVSM results more useful for exploit-vulnerability linking and risk prioritization activities than those produced by prevailing approaches. Given the rising cost of cyberattacks, the EVA-DSSM and DVSM have important implications for analysts in security operations centers, incident response teams, and cybersecurity vendors. 
    more » « less
  4. Privacy scholarship has shown how norms of appropriate information flow and information regulatory processes vary according to environment, which change as the environment changes, including through the introduction of new technologies. This paper describes findings from a qualitative research study that examines practices and perceptions of privacy in Cambodia as the population rapidly moves into an online environment (specifically Facebook, the most popular Internet tool in Cambodia today). We empirically demonstrate how the concept of privacy differs across cultures and show how the Facebook platform, as it becomes popular worldwide, catalyzes change in norms of information regulation. We discuss how the localization of transnational technology platforms provides a key site in which to investigate changing cultural ideas about privacy, and to discover misalignments between different expectations for information flow. Finally, we explore ways that insufficient localization effort by transnational technology companies puts some of the most marginalized users at disproportionate information disclosure risk when using new Internet tools, and offer some pragmatic suggestions for how such companies could improve privacy tools for users who are far -geographically or culturally - from where the tools are designed. 
    more » « less
  5. Dark patterns are user interface elements that can influence a person's behavior against their intentions or best interests. Prior work identified these patterns in websites and mobile apps, but little is known about how the design of platforms might impact dark pattern manifestations and related human vulnerabilities. In this paper, we conduct a comparative study of mobile application, mobile browser, and web browser versions of 105 popular services to investigate variations in dark patterns across modalities. We perform manual tests, identify dark patterns in each service, and examine how they persist or differ by modality. Our findings show that while services can employ some dark patterns equally across modalities, many dark patterns vary between platforms, and that these differences saddle people with inconsistent experiences of autonomy, privacy, and control. We conclude by discussing broader implications for policymakers and practitioners, and provide suggestions for furthering dark patterns research. 
    more » « less