skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Study on Personal Identifiable Information Exposure on the Internet
Abstract—Personal Identifiable Information (PII) is any information that permits the identity of an individual to be directly or indirectly inferred. It should be protected against random access. This paper studies the extent of PII exposure on the Internet. It is hoped that the results of this study can help raise the Internet users’ awareness on privacy protection.  more » « less
Award ID(s):
1946391
PAR ID:
10423939
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The 2022 International Conference on Computational Science and Computational Intelligence
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Personally Identifiable Information (PII) leakage can lead to identity theft, financial loss, reputation damage, and anxiety. However, individuals remain largely unaware of their PII exposure on the Internet, and whether providing individuals with information about the extent of their PII exposure can trigger privacy protection actions requires further investigation. In this pilot study, grounded by Protection Motivation Theory (PMT), we examine whether receiving privacy alerts in the form of threat and countermeasure information will trigger senior citizens to engage in protective behaviors. We also examine whether providing personalized information moderates the relationship between information and individuals' perceptions. We contribute to the literature by shedding light on the determinants and barriers to adopting privacy protection behaviors. 
    more » « less
  2. null (Ed.)
    The information privacy of the Internet users has become a major societal concern. The rapid growth of online services increases the risk of unauthorized access to Personally Identifiable Information (PII) of at-risk populations, who are unaware of their PII exposure. To proactively identify online at-risk populations and increase their privacy awareness, it is crucial to conduct a holistic privacy risk assessment across the internet. Current privacy risk assessment studies are limited to a single platform within either the surface web or the dark web. A comprehensive privacy risk assessment requires matching exposed PII on heterogeneous online platforms across the surface web and the dark web. However, due to the incompleteness and inaccuracy of PII records in each platform, linking the exposed PII to users is a non-trivial task. While Entity Resolution (ER) techniques can be used to facilitate this task, they often require ad-hoc, manual rule development and feature engineering. Recently, Deep Learning (DL)-based ER has outperformed manual entity matching rules by automatically extracting prominent features from incomplete or inaccurate records. In this study, we enhance the existing privacy risk assessment with a DL-based ER method, namely Multi-Context Attention (MCA), to comprehensively evaluate individuals’ PII exposure across the different online platforms in the dark web and surface web. Evaluation against benchmark ER models indicates the efficacy of MCA. Using MCA on a random sample of data breach victims in the dark web, we are able to identify 4.3% of the victims on the surface web platforms and calculate their privacy risk scores. 
    more » « less
  3. People Search Websites aggregate and publicize users’ Personal Identifiable Information (PII), previously sourced from data brokers. This paper presents a qualitative study of the perceptions and experiences of 18 participants who sought information removal by hiring a removal service or requesting removal from the sites. The users we interviewed were highly motivated and had sophisticated risk perceptions. We found that they encountered obstacles during the removal process, resulting in a high cost of removal, whether they requested it themselves or hired a service. Participants perceived that the successful monetization of users PII motivates data aggregators to make the removal more difficult. Overall, self management of privacy by attempting to keep information off the internet is difficult and its’ success is hard to evaluate. We provide recommendations to users, third parties, removal services and researchers aiming to improve the removal process. 
    more » « less
  4. Skeleton-based motion capture and visualization is an important computer vision task, especially in the virtual reality (VR) envi- ronment. It has grown increasingly popular due to the ease of gathering skeleton data and the high demand of virtual socializa- tion. The captured skeleton data seems anonymous but can still be used to extract personal identifiable information (PII). This can lead to an unintended privacy leakage inside a VR meta-verse. We propose a novel linkage attack on skeleton-based motion visual- ization. It detects if a target and a reference skeleton are the same individual. The proposed model, called Linkage Attack Neural Net- work (LAN), is based on the principles of a Siamese Network. It incorporates deep neural networks to embed the relevant PII then uses a classifier to match the reference and target skeletons. We also employ classical and deep motion retargeting (MR) to cast the target skeleton onto a dummy skeleton such that the motion sequence is anonymized for privacy protection. Our evaluation shows that the effectiveness of LAN in the linkage attack and the effectiveness of MR in anonymization. The source code is available at https://github.com/Thomasc33/Linkage-Attack 
    more » « less
  5. In the current automotive ecosystem, the trend of pairing mobile devices to connected vehicles is gaining momentum, providing a vast number of benefits such as hands-free driving and remote vehicle control. However, along with these conveniences arises the issue of data accumulation, ranging from vehicle diagnostics to personal identifiable information (PII). The problem emerges when a consumer rents a vehicle, pairs their mobile device to the infotainment system, and neglects to remove their device prior to returning the vehicle. This oversight can potentially expose vulnerabilities with the current renter’s PII for subsequent renters to exploit. Research indicates that renters often overlook the deletion process prior to returning the rental vehicle and are unaware of whose responsibility it is to perform this task. In this survey, we investigated the experiences and perceptions of a group of consumers who have previously rented vehicles. We wanted to know if the participants were aware they were responsible for deleting their mobile device from the rental vehicle before returning it, the renters’ importance and tolerance for risk if they overlooked the deletion process leaving their shared data on the infotainment system for subsequent users, and if they were aware who was responsible for deleting their shared data. Lastly, we explored if the participants supported an automated solution to perform this manual deletion process. The goal of this paper is to demonstrate the significance of safeguarding PII in connected vehicles and advocate for the adoption of an automated solution to mitigate this privacy risk. 
    more » « less