Abstract Local delivery networks expect drivers to make deliveries to and/or pickups from customers using the shortest routes in order to minimize costs, delivery time, and environmental impact. However, in real‐world applications, it is often the case that not all customers are known when planning the initial delivery route. Instead, additional customers become known while the driver is making deliveries or pickups. Before serving the new demand requests, the vehicle will return to the depot for restocking. In other words, there exists a precedence relation in the delivery route to visit the depot before delivering new orders. The uncertainty in new customer locations can lead to expensive rerouting of the tour, as drivers revisit previous neighborhoods to serve the new customers. We address this issue by constructing the delivery route with the knowledge that additional customers will appear, using historical demand patterns to guide our predictions for the uncertainty. We model this network delivery problem as a precedence‐constrained asymmetric traveling salesman problem using mixed‐integer optimization. Experimental results show that the proposed robust optimization approach provides an effective delivery route under the uncertainty of customer demands.
more »
« less
Creating a content delivery network for general science on the internet backbone using XCaches
A general problem faced by opportunistic users computing on the grid is that delivering cycles is simpler than delivering data to those cycles. In this project XRootD caches are placed on the internet backbone to create a content delivery network. Scientific workflows in the domains of high energy physics, gravitational waves, and others profit from this delivery network to increases CPU efficiency while decreasing network bandwidth use.
more »
« less
- PAR ID:
- 10218359
- Editor(s):
- Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W.
- Date Published:
- Journal Name:
- EPJ Web of Conferences
- Volume:
- 245
- ISSN:
- 2100-014X
- Page Range / eLocation ID:
- 04041
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Box delivery is a complicated manual material handling task which needs to consider the box weight, delivering speed, stability, and location. This paper presents a subtask-based inverse dynamic optimization formulation for determining the two-dimensional (2D) symmetric optimal box delivery motion. For the subtask-based formulation, the delivery task is divided into five subtasks: lifting, the first transition step, carrying, the second transition step, and unloading. To render a complete delivering task, each subtask is formulated as a separate optimization problem with appropriate boundary conditions. For carrying and lifting subtasks, the cost function is the sum of joint torque squared. In contrast, for transition subtasks, the cost function is the combination of joint discomfort and joint torque squared. Joint angle profiles are validated through experimental results using Pearson’s correlation coefficient (r) and root-mean-square-error (RMSE). Results show that the subtask-based approach is computationally efficient for complex box delivery motion simulation. This research outcome provides a practical guidance to prevent injury risks in joint torque space for workers who deliver heavy objects in their daily jobs.more » « less
-
MicroRNA (miRNA) has emerged as a promising alternative therapeutic treatment for cancer, but its delivery has been hindered by low cellular uptake and degradation during circulation. In this review, we discuss the various methods of delivering miRNA, including viral and non-viral delivery systems such as liposomes and nanoparticles. We also examine the use of nanoparticles for miRNA-based diagnostics. We focus specifically on non-viral delivery systems utilizing coinage metals in the form of nanoparticles and the use of self-assembled monolayers (SAMs) as a method of surface modification. We review the use of SAMs for the conjugation and delivery of small noncoding ribonucleic acid (ncRNA), particularly SAMs derived from positively charged adsorbates to generate charged surfaces that can interact electrostatically with negatively charged miRNA. We also discuss the effects of the cellular uptake of gold and other plasmonic nanoparticles, as well as the challenges associated with the degradation of oligonucleotides. Our review highlights the potential of SAM-based systems as versatile and robust tools for delivering miRNA and other RNAs in vitro and in vivo and the need for further research to address the challenges associated with miRNA delivery and diagnostics.more » « less
-
Datacenters need networks that support both low-latency and high-bandwidth packet delivery to meet the stringent requirements of modern applications. We present Opera, a dynamic network that delivers latency-sensitive traffic quickly by relying on multi-hop forwarding in the same way as expander-graph-based approaches, but provides near-optimal bandwidth for bulk flows through direct forwarding over time-varying source-to-destination circuits. Unlike prior approaches, Opera requires no separate electrical network and no active circuit scheduling. The key to Opera's design is the rapid and deterministic reconfiguration of the network, piece-by-piece, such that at any moment in time the network implements an expander graph, yet, integrated across time, the network provides bandwidth-efficient single-hop paths between all racks. We show that Opera supports low-latency traffic with flow completion times comparable to cost-equivalent static topologies, while delivering up to 4x the bandwidth for all-to-all traffic and supporting up to 60% higher load for published datacenter workloads.more » « less
-
Engineered living materials (ELMs) are an emerging class of materials that are synthesized and/or populated by living cells to achieve novel functionalities including self‐healing and sensing. Providing nutrients to living cells within an ELM over prolonged periods remains a major technical challenge that limits the service life of ELMs. Bone maintains living cells for decades by delivering nutrients through a network of nanoscale channels punctuated by microscale pores. Nutrient transfer in bone is enabled by mechanical loading experienced by the material during regular use. Herein, the geometric traits of the network of channels and pores that can be used in ELMs to allow mechanical loading to enable nutrient delivery to resident cell populations are identified in a manner seen in bone. Transport occurs when deformation in the microscale pore network exceeds the volume of the connecting channels. Computational models show that transport is enhanced at greater loading magnitudes and lower loading frequencies. The computational results are confirmed using experiments with microfluidic systems. In the findings, quantitative design principles are provided for channel‐pore networks capable of sustained delivery of nutrients to living cells within materials.more » « less
An official website of the United States government

