skip to main content


Title: Free-energy changes of bacteriorhodopsin point mutants measured by single-molecule force spectroscopy

Single amino acid mutations provide quantitative insight into the energetics that underlie the dynamics and folding of membrane proteins. Chemical denaturation is the most widely used assay and yields the change in unfolding free energy (ΔΔG). It has been applied to >80 different residues of bacteriorhodopsin (bR), a model membrane protein. However, such experiments have several key limitations: 1) a nonnative lipid environment, 2) a denatured state with significant secondary structure, 3) error introduced by extrapolation to zero denaturant, and 4) the requirement of globally reversible refolding. We overcame these limitations by reversibly unfolding local regions of an individual protein with mechanical force using an atomic-force-microscope assay optimized for 2 μs time resolution and 1 pN force stability. In this assay, bR was unfolded from its native bilayer into a well-defined, stretched state. To measure ΔΔG, we introduced two alanine point mutations into an 8-amino-acid region at the C-terminal end of bR’s G helix. For each, we reversibly unfolded and refolded this region hundreds of times while the rest of the protein remained folded. Our single-molecule–derived ΔΔGfor mutant L223A (−2.3 ± 0.6 kcal/mol) quantitatively agreed with past chemical denaturation results while our ΔΔGfor mutant V217A was 2.2-fold larger (−2.4 ± 0.6 kcal/mol). We attribute the latter result, in part, to contact between Val217and a natively bound squalene lipid, highlighting the contribution of membrane protein–lipid contacts not present in chemical denaturation assays. More generally, we established a platform for determining ΔΔGfor a fully folded membrane protein embedded in its native bilayer.

 
more » « less
Award ID(s):
1716033 1734006
NSF-PAR ID:
10218372
Author(s) / Creator(s):
;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
13
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2020083118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Precisely quantifying the energetics that drive the folding of membrane proteins into a lipid bilayer remains challenging. More than 15 years ago, atomic force microscopy (AFM) emerged as a powerful tool to mechanically extract individual membrane proteins from a lipid bilayer. Concurrently, fluctuation theorems, such as the Jarzynski equality, were applied to deduce equilibrium free energies (ΔG0) from non-equilibrium single-molecule force spectroscopy records. The combination of these two advances in single-molecule studies deduced the free-energy of the model membrane protein bacteriorhodopsin in its native lipid bilayer. To elucidate this free-energy landscape at a higher resolution, we applied two recent developments. First, as an input to the reconstruction, we used force-extension curves acquired with a 100-fold higher time resolution and 10-fold higher force precision than traditional AFM studies of membrane proteins. Next, by using an inverse Weierstrass transform and the Jarzynski equality, we removed the free energy associated with the force probe and determined the molecular free-energy landscape of the molecule under study, bacteriorhodopsin. The resulting landscape yielded an average unfolding free energy per amino acid (aa) of 1.0 ± 0.1 kcal/mol, in agreement with past single-molecule studies. Moreover, on a smaller spatial scale, this high-resolution landscape also agreed with an equilibrium measurement of a particular three-aa transition in bacteriorhodopsin that yielded 2.7 kcal/mol/aa, an unexpectedly high value. Hence, while average unfolding ΔG0 per aa is a useful metric, the derived high-resolution landscape details significant local variation from the mean. More generally, we demonstrated that, as anticipated, the inverse Weierstrass transform is an efficient means to reconstruct free-energy landscapes from AFM data. 
    more » « less
  2. Ligand-induced conformational changes are critical to the function of many membrane proteins and arise from numerous intramolecular interactions. In the photocycle of the model membrane protein bacteriorhodopsin (bR), absorption of a photon by retinal triggers a conformational cascade that results in pumping a proton across the cell membrane. While decades of spectroscopy and structural studies have probed this photocycle in intricate detail, changes in intramolecular energetics that underlie protein motions have remained elusive to experimental quantification. Here, we measured these energetics on the millisecond time scale using atomic-force-microscopy-based single-molecule force spectroscopy. Precisely, timed light pulses triggered the bR photocycle while we measured the equilibrium unfolding and refolding of the terminal 8-amino-acid region of bR’s G-helix. These dynamics changed when the EF-helix pair moved ~9 Å away from this end of the G helix during the “open” portion of bR’s photocycle. In ~60% of the data, we observed abrupt light-induced destabilization of 3.4 ± 0.3 kcal/mol, lasting 38 ± 3 ms. The kinetics and pH-dependence of this destabilization were consistent with prior measurements of bR’s open phase. The frequency of light-induced destabilization increased with the duration of illumination and was dramatically reduced in the triple mutant (D96G/F171C/F219L) thought to trap bR in its open phase. In the other ~40% of the data, photoexcitation unexpectedly stabilized a longer-lived putative misfolded state. Through this work, we establish a general single-molecule force spectroscopy approach for measuring ligand-induced energetics and lifetimes in membrane proteins.

     
    more » « less
  3. The actin filament network is in part remodeled by the action of a family of filament severing proteins that are responsible for modulating the ratio between monomeric and filamentous actin. Recent work on the protein Actophorin from the amoeba Acanthamoeba castellani identified a series of site directed mutations that increase the thermal stability of the protein by 22 ◦C. Here, we expand this observation by showing that the mutant protein is also significantly stable to both equilibrium and kinetic chemical denaturation, and employ computer simulations to account for the increase in thermal or chemical stability through an accounting of atomic-level interactions. Specifically, the potential of mean force (PMF) can be obtained from steered molecular dynamics (SMD) simulations in which a protein is unfolded. However, SMD can be inefficient for large proteins as they require large solvent boxes, and computationally expensive as they require increasingly many SMD trajectories to converge the PMF. Adaptive steered molecular dynamics (ASMD) overcomes the second of these limitations by steering the particle in stages, which allows for convergence of the PMF using fewer trajectories compared to SMD. Use of the telescoping water scheme within ASMD partially overcomes the first of these limitations by reducing the number of waters at each stage to only those needed to solvate the structure within a given stage. In the PMFs obtained from ASMD, the work of unfolding Acto-2 was found to be higher than the Acto-WT by approximately 120 kCal/mol and reflects the increased stability seen in the chemical denaturation experiments. The evolution of the average number of hydrogen bonds andnumber of salt bridges during the pulling process provides a mechanistic view of the structural changes of the Actophorin protein as it is unfolded, and how it is affected by the mutation in concert with the energetics reported through the PMF. 
    more » « less
  4. Abstract

    The forces that stabilize membrane proteins remain elusive to precise quantification. Particularly important, but poorly resolved, are the forces present during the initial unfolding of a membrane protein, where the most native set of interactions is present. A high‐precision, atomic force microscopy assay was developed to study the initial unfolding of bacteriorhodopsin. A rapid near‐equilibrium folding between the first three unfolding states was discovered, the two transitions corresponded to the unfolding of five and three amino acids, respectively, when using a cantilever optimized for 2 μs resolution. The third of these states was retinal‐stabilized and previously undetected, despite being the most mechanically stable state in the whole unfolding pathway, supporting 150 pN for more than 1 min. This ability to measure the dynamics of the initial unfolding of bacteriorhodopsin provides a platform for quantifying the energetics of membrane proteins under native‐like conditions.

     
    more » « less
  5. Abstract

    The forces that stabilize membrane proteins remain elusive to precise quantification. Particularly important, but poorly resolved, are the forces present during the initial unfolding of a membrane protein, where the most native set of interactions is present. A high‐precision, atomic force microscopy assay was developed to study the initial unfolding of bacteriorhodopsin. A rapid near‐equilibrium folding between the first three unfolding states was discovered, the two transitions corresponded to the unfolding of five and three amino acids, respectively, when using a cantilever optimized for 2 μs resolution. The third of these states was retinal‐stabilized and previously undetected, despite being the most mechanically stable state in the whole unfolding pathway, supporting 150 pN for more than 1 min. This ability to measure the dynamics of the initial unfolding of bacteriorhodopsin provides a platform for quantifying the energetics of membrane proteins under native‐like conditions.

     
    more » « less