Single amino acid mutations provide quantitative insight into the energetics that underlie the dynamics and folding of membrane proteins. Chemical denaturation is the most widely used assay and yields the change in unfolding free energy (ΔΔG). It has been applied to >80 different residues of bacteriorhodopsin (bR), a model membrane protein. However, such experiments have several key limitations: 1) a nonnative lipid environment, 2) a denatured state with significant secondary structure, 3) error introduced by extrapolation to zero denaturant, and 4) the requirement of globally reversible refolding. We overcame these limitations by reversibly unfolding local regions of an individual protein with mechanical force using an atomic-force-microscope assay optimized for 2 μs time resolution and 1 pN force stability. In this assay, bR was unfolded from its native bilayer into a well-defined, stretched state. To measure ΔΔG, we introduced two alanine point mutations into an 8-amino-acid region at the C-terminal end of bR’s G helix. For each, we reversibly unfolded and refolded this region hundreds of times while the rest of the protein remained folded. Our single-molecule–derived ΔΔGfor mutant L223A (−2.3 ± 0.6 kcal/mol) quantitatively agreed with past chemical denaturation results while our ΔΔGfor mutant V217A was 2.2-fold larger (−2.4 ± 0.6 kcal/mol). We attribute the latter result, in part, to contact between Val217and a natively bound squalene lipid, highlighting the contribution of membrane protein–lipid contacts not present in chemical denaturation assays. More generally, we established a platform for determining ΔΔGfor a fully folded membrane protein embedded in its native bilayer.
more »
« less
Quantifying a light-induced energetic change in bacteriorhodopsin by force spectroscopy
Ligand-induced conformational changes are critical to the function of many membrane proteins and arise from numerous intramolecular interactions. In the photocycle of the model membrane protein bacteriorhodopsin (bR), absorption of a photon by retinal triggers a conformational cascade that results in pumping a proton across the cell membrane. While decades of spectroscopy and structural studies have probed this photocycle in intricate detail, changes in intramolecular energetics that underlie protein motions have remained elusive to experimental quantification. Here, we measured these energetics on the millisecond time scale using atomic-force-microscopy-based single-molecule force spectroscopy. Precisely, timed light pulses triggered the bR photocycle while we measured the equilibrium unfolding and refolding of the terminal 8-amino-acid region of bR’s G-helix. These dynamics changed when the EF-helix pair moved ~9 Å away from this end of the G helix during the “open” portion of bR’s photocycle. In ~60% of the data, we observed abrupt light-induced destabilization of 3.4 ± 0.3 kcal/mol, lasting 38 ± 3 ms. The kinetics and pH-dependence of this destabilization were consistent with prior measurements of bR’s open phase. The frequency of light-induced destabilization increased with the duration of illumination and was dramatically reduced in the triple mutant (D96G/F171C/F219L) thought to trap bR in its open phase. In the other ~40% of the data, photoexcitation unexpectedly stabilized a longer-lived putative misfolded state. Through this work, we establish a general single-molecule force spectroscopy approach for measuring ligand-induced energetics and lifetimes in membrane proteins.
more »
« less
- PAR ID:
- 10504267
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 7
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
G protein-coupled receptors (GPCRs) represent the largest group of membrane receptors for transmembrane signal transduction. Ligand-induced activation of GPCRs triggers G protein activation followed by various signaling cascades. Understanding the structural and energetic determinants of ligand binding to GPCRs and GPCRs to G proteins is crucial to the design of pharmacological treatments targeting specific conformations of these proteins to precisely control their signaling properties. In this study, we focused on interactions of a prototypical GPCR, beta-2 adrenergic receptor (β 2 AR), with its endogenous agonist, norepinephrine (NE), and the stimulatory G protein (G s ). Using molecular dynamics (MD) simulations, we demonstrated the stabilization of cationic NE, NE(+), binding to β 2 AR by G s protein recruitment, in line with experimental observations. We also captured the partial dissociation of the ligand from β 2 AR and the conformational interconversions of G s between closed and open conformations in the NE(+)–β 2 AR–G s ternary complex while it is still bound to the receptor. The variation of NE(+) binding poses was found to alter G s α subunit (G s α) conformational transitions. Our simulations showed that the interdomain movement and the stacking of G s α α1 and α5 helices are significant for increasing the distance between the G s α and β 2 AR, which may indicate a partial dissociation of G s α The distance increase commences when G s α is predominantly in an open state and can be triggered by the intracellular loop 3 (ICL3) of β 2 AR interacting with G s α, causing conformational changes of the α5 helix. Our results help explain molecular mechanisms of ligand and GPCR-mediated modulation of G protein activation.more » « less
-
Single-molecule force spectroscopy methods, such as AFM and magnetic tweezers, have proved extremely beneficial in elucidating folding pathways for soluble and membrane proteins. To identify factors that determine the force rupture levels in force-induced membrane protein unfolding, we applied our near-atomic-level Upside molecular dynamics package to study the vertical and lateral pulling of bacteriorhodopsin (bR) and GlpG, respectively. With our algorithm, we were able to selectively alter the magnitudes of individual interaction terms and identify that, for vertical pulling, hydrogen bond strength had the strongest effect, whereas other non-bonded protein and membrane–protein interactions had only moderate influences, except for the extraction of the last helix where the membrane–protein interactions had a stronger influence. The up–down topology of the transmembrane helices caused helices to be pulled out as pairs. The rate-limiting rupture event often was the loss of H-bonds and the ejection of the first helix, which then propagated tension to the second helix, which rapidly exited the bilayer. The pulling of the charged linkers across the membrane had minimal influence, as did changing the bilayer thickness. For the lateral pulling of GlpG, the rate-limiting rupture corresponded to the separation of the helices within the membrane, with the H-bonds generally being broken only afterward. Beyond providing a detailed picture of the rupture events, our study emphasizes that the pulling mode greatly affects the factors that determine the forces needed to unfold a membrane protein.more » « less
-
Binding-induced mechanical stabilization plays key roles in proteins involved in muscle contraction, cellular mechanotransduction, or bacterial adhesion. Because of the vector nature of force, single-molecule force spectroscopy techniques are ideal for measuring the mechanical unfolding of proteins. However, current approaches are still prone to calibration errors between experiments and geometrical variations between individual tethers. Here, we introduce a single-molecule assay based on magnetic tweezers and heterocovalent attachment, which can measure the binding of the substrate–ligand using the same protein molecule. We demonstrate this approach with protein L, a model bacterial protein which has two binding interfaces for the same region of kappa-light chain antibody ligands. Engineered molecules with eight identical domains of protein L between a HaloTag and a SpyTag were exposed to repeated unfolding–refolding cycles at forces up to 100 pN for several hours at a time. The unfolding behavior of the same protein was measured in solution buffers with different concentrations of antibody ligands. With increasing antibody concentration, an increasing number of protein L domains became more stable, indicative of ligand binding and mechanical reinforcement. Interestingly, the dissociation constant of the mechanically reinforced states coincides with that measured for the low-avidity binding interface of protein L, suggesting a physiological role for the second binding interface. The molecular approach presented here opens the road to a new type of binding experiments, where the same molecule can be exposed to different solvents or ligands.more » « less
-
Precisely quantifying the energetics that drive the folding of membrane proteins into a lipid bilayer remains challenging. More than 15 years ago, atomic force microscopy (AFM) emerged as a powerful tool to mechanically extract individual membrane proteins from a lipid bilayer. Concurrently, fluctuation theorems, such as the Jarzynski equality, were applied to deduce equilibrium free energies (ΔG0) from non-equilibrium single-molecule force spectroscopy records. The combination of these two advances in single-molecule studies deduced the free-energy of the model membrane protein bacteriorhodopsin in its native lipid bilayer. To elucidate this free-energy landscape at a higher resolution, we applied two recent developments. First, as an input to the reconstruction, we used force-extension curves acquired with a 100-fold higher time resolution and 10-fold higher force precision than traditional AFM studies of membrane proteins. Next, by using an inverse Weierstrass transform and the Jarzynski equality, we removed the free energy associated with the force probe and determined the molecular free-energy landscape of the molecule under study, bacteriorhodopsin. The resulting landscape yielded an average unfolding free energy per amino acid (aa) of 1.0 ± 0.1 kcal/mol, in agreement with past single-molecule studies. Moreover, on a smaller spatial scale, this high-resolution landscape also agreed with an equilibrium measurement of a particular three-aa transition in bacteriorhodopsin that yielded 2.7 kcal/mol/aa, an unexpectedly high value. Hence, while average unfolding ΔG0 per aa is a useful metric, the derived high-resolution landscape details significant local variation from the mean. More generally, we demonstrated that, as anticipated, the inverse Weierstrass transform is an efficient means to reconstruct free-energy landscapes from AFM data.more » « less
An official website of the United States government

