skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Facilitating Veteran and Adult Students’ Learning and Retention in Engineering: Faculty-Student Partnership – A Model of an Evidence-based Practice
A model for facilitating veteran students’ learning and retention is presented based on andragogy - the science of adult learning. Adults are independent self-directed learners who accept responsibility for their own learning. Adults can be skeptical and challenge new information but are particularly motivated when the information presented is applicable and relevant to their careers. With a growing number of veterans entering higher education and the challenges associated with retention, it is important to understand and incorporate the basics of andragogy in curriculum and course development to facilitate veteran and adult students’ learning and degree completion. STEM education, and in particular engineering education, continues to be a major focus in K-12 and higher education. Funded by the NSF, this S-STEM project proposes interventions to retain and graduate students with academic promise and strong financial need. The researchers for this project seek to develop innovative, reliable, and replicable ways in which to affect the learning and retention of engineering students, with a focus on veteran students and adult learners. Drawing on the lessons of andragogy, in this paper, faculty share the processes implemented, content derived, and preliminary data from a faculty-student partnership in the development of a mid- to near-degree completion seminar as a model of an evidence-based practice that is affecting student learning and retention.  more » « less
Award ID(s):
1742118
PAR ID:
10218478
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 CoNECD
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This poster showcases the progress of students who are receiving scholarships from the National Science Foundation S-STEM project: A Pathway to Completion for Pursuing Engineering and Engineering Technology Degrees. Thus far, 20 academically high-achieving students who demonstrate financial need have participated in the project. Thirty-six scholarships have been awarded to date, in which a maximum of twelve scholarships are awarded per semester; some students have received scholarships multiple times. Students are from electrical engineering, computer engineering, mechanical engineering, civil engineering, civil engineering technology, and modeling and simulation majors. As part of this S-STEM project, students also receive academic support, mentorship related to the development of professional workforce skills, career search skills, and opportunities to participate in industry-related field trips. Role models, many of whom are practicing engineers with STEM degrees and are military veterans, serve as presenters and share their personal career pathways and answer students’ questions in the required one-hour weekly seminar. Although the students participating in this project meet the strenuous academic criteria set by the project (3.0/4.0), many of the students struggle financially, due to having expended their G.I. benefits, which can impede their academic performance and graduation. While many student success programs focus on freshman and sophomore students, what makes this project unique is its focus on enabling student success at the junior and senior years. This project provides a portfolio of different activities for the more mature student, e.g. financial aid through scholarships, community-based learning opportunities, and academic success strategies that enable stronger retention and student completion rates. Project activities are tailored to veterans and adult learners as this group of students is particularly vulnerable given their need to simultaneously juggle academic, family, and financial obligations. 
    more » « less
  2. Continuing education after years of technician experience can pose multiple challenges to the adult student population, such as incumbent workforce technicians and veterans. Veterans, through their active service, frequently receive training in highly skilled technical areas but may lack a theoretical background in underlying engineering principles. While STEM education is important for the maintenance of national competitiveness, it is especially critical that the nation’s veterans, who possess technical STEM training gained in the military, are enabled to pursue higher education in order to increase the quantity and quality of talent available in the STEM workforce. A program that will be presented in this paper emphasizes the importance of recruiting students to engineering and engineering technology disciplines, mentoring and supporting students through degree completion, and partnering with employers to facilitate student academic success and career placement in the STEM workforce. Enabling multiple mechanisms which support and provide guidance are especially important at universities with large veteran populations such as Old Dominion University, Norfolk, Virginia. Advancing the field’s understanding of interventions that affect these outcomes for adult students and student veterans is important for the improvement of future support programs as well as to guide implementation across different institutions. The program presented in this paper is funded by the National Science Foundation. 
    more » « less
  3. Eight semesters of qualitative data, collected over four academic years, are presented from a project that resulted in the development of a student professional learning community of high-achieving, low-income engineering and engineering technology student veterans. In the context of this project, student veterans received academic, professional, and financial support that helped them to be successful in school and to prepare them for a career in the STEM workforce. As adult learners, students in this learning community were a vital part of the curriculum development which resulted in increasing the students’ interest and buy-in. Typically, adult learners have lower levels of engagement than tradition-age students due to their non-traditional status. However, by engaging students in the development of a seminar course which served as the foundation for the student learning community, the course curriculum addressed student needs while being built on faculty expertise. Focus groups were conducted at the end of each semester to determine if students perceived the course as an effective professional development intervention. The course was comprised of various guest speaker who addressed different topics related to engineering, and the course also addressed other topics of professional development. In addition to hearing from various guest speakers, students also learned critical professional skills including how to search for an internship and/or permanent position; how to develop a cover letter, resume, and follow-up letter; how to prepare for and respond to questions during interviews; how to present themselves, how to dress, eat and hold a professional conversation at a formal meal during an interview; and how to network and follow-up after meeting people professionally. The guest speakers, veterans themselves, were excited to present to these highly motivated student veterans and to share their stories, and in the process, they inspired this next generation of engineers and engineering technologists. 
    more » « less
  4. Eight semesters of qualitative data, collected over four academic years, are presented from a project that resulted in the development of a student professional learning community of high-achieving, low-income engineering and engineering technology student veterans. In the context of this project, student veterans received academic, professional, and financial support that helped them to be successful in school and to prepare them for a career in the STEM workforce. As adult learners, students in this learning community were a vital part of the curriculum development which resulted in increasing the students’ interest and buy-in. Typically, adult learners have lower levels of engagement than tradition-age students due to their non-traditional status. However, by engaging students in the development of a seminar course which served as the foundation for the student learning community, the course curriculum addressed student needs while being built on faculty expertise. Focus groups were conducted at the end of each semester to determine if students perceived the course as an effective professional development intervention. The course was comprised of various guest speaker who addressed different topics related to engineering, and the course also addressed other topics of professional development. In addition to hearing from various guest speakers, students also learned critical professional skills including how to search for an internship and/or permanent position; how to develop a cover letter, resume, and follow-up letter; how to prepare for and respond to questions during interviews; how to present themselves, how to dress, eat and hold a professional conversation at a formal meal during an interview; and how to network and follow-up after meeting people professionally. The guest speakers, veterans themselves, were excited to present to these highly motivated student veterans and to share their stories, and in the process, they inspired this next generation of engineers and engineering technologists. 
    more » « less
  5. With support from the National Science Foundation’s Division of Undergraduate Education, this five-year project led by a two-year HSI seeks to provide underrepresented students with mentored work experiences in computer information systems. Students will have access to on-campus work experiences and internships in businesses and industries. It is anticipated that some examples of potential student projects include mobile application development, cybersecurity, and computer support. It is expected that these experiences will increase undergraduate student interest, persistence, and success in computer information systems, as well as in STEM more broadly. To ensure that they are well-prepared for and gain the most from their work experiences, students will receive training on employability skills such as communication, teamwork, and project management. In addition, during their work experiences, students will be mentored by faculty, industry professionals, and peers. To strengthen the capacity of faculty to serve all students, including Hispanic students, the project will provide faculty with professional development focused on equity mindset. This framework to provide mentored work experiences will be developed and piloted at Phoenix College, in the computer information technology department and eventually expanded to other STEM fields at the institution. Following this, the project also intends to expand this framework four other two-year HSIs in the region. Through this work, the project aims to develop a replicable model for how two-year institutions can develop work experiences that foster increased student graduation and entry into STEM career pathways. This project, which is currently in its first year, seeks to examine how a curriculum that integrates cross-sector partnerships to provide work experiences can enhance STEM learning and retention. Using mixed methods and grounded theory, the project will expand knowledge about: (1) the impact of cross-sector partnerships that support work-focused experiential teaching and learning; (2) systematic ways to maintain and better use cross-sector partnerships; and (3) the degree to which a model of work-focused learning experiences can be adopted at other two-year HSIs and by other STEM fields. Baseline data about Hispanic serving identity at the pilot institution has been collected and assessed at the institutional, departmental, and for different educator roles including faculty, support staff, and administrative leaders to produce inputs towards developing a detailed plan of action. Early results from baseline data, visualizations, and planning responses will be reported in the submission. Expected long term results of the project include: development of sustainable mechanisms to foster cross-sector partnerships; increased student retention and workforce readiness; and measurable successes for STEM students, particularly Hispanic students, at two-year HSIs. 
    more » « less