skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Common Era sea-level budgets along the U.S. Atlantic coast
Abstract Sea-level budgets account for the contributions of processes driving sea-level change, but are predominantly focused on global-mean sea level and limited to the 20th and 21st centuries. Here we estimate site-specific sea-level budgets along the U.S. Atlantic coast during the Common Era (0–2000 CE) by separating relative sea-level (RSL) records into process-related signals on different spatial scales. Regional-scale, temporally linear processes driven by glacial isostatic adjustment dominate RSL change and exhibit a spatial gradient, with fastest rates of rise in southern New Jersey (1.6 ± 0.02 mm yr −1 ). Regional and local, temporally non-linear processes, such as ocean/atmosphere dynamics and groundwater withdrawal, contributed between −0.3 and 0.4 mm yr −1 over centennial timescales. The most significant change in the budgets is the increasing influence of the common global signal due to ice melt and thermal expansion since 1800 CE, which became a dominant contributor to RSL with a 20th century rate of 1.3 ± 0.1 mm yr −1 .  more » « less
Award ID(s):
1804999 1702587 2002437
PAR ID:
10218560
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We propose a Bayesian, noisy-input, spatial–temporal generalized additive model to examine regional relative sea-level (RSL) changes over time. The model provides probabilistic estimates of component drivers of regional RSL change via the combination of a univariate spline capturing a common regional signal over time, random slopes and intercepts capturing site-specific (local), long-term linear trends and a spatial–temporal spline capturing residual, non-linear, local variations. Proxy and instrumental records of RSL and corresponding measurement errors inform the model and a noisy-input method accounts for proxy temporal uncertainties. Results highlight the decomposition of regional RSL changes over 3,000 years along North America’s Atlantic coast. The physical process glacial isostatic adjustment prevailed before 1800 CE, with anthropogenic forcing dominating after 1900 CE. 
    more » « less
  2. Abstract. Identifying the causes for historical sea-level changes in coastal tide-gauge records is important for constraining oceanographic, geologic, and climatic processes. The Río de la Plata estuary in South America features the longest tide-gauge records in the South Atlantic. Despite the relevance of these data for large-scale circulation and climate studies, the mechanisms underlying relative sea-level changes in this region during the past century have not been firmly established. I study annual data from tide gauges in the Río de la Plata and stream gauges along the Río Paraná and Río Uruguay to establish relationships between river streamflow and sea level over 1931–2014. Regression analysis suggests that streamflow explains 59 %±17 % of the total sea-level variance at Buenos Aires, Argentina, and 28 %±21 % at Montevideo, Uruguay (95 % confidence intervals). A long-term streamflow increase effected sea-level trends of 0.71±0.35 mm yr−1 at Buenos Aires and 0.48±0.38 mm yr−1 at Montevideo. More generally, sea level at Buenos Aires and Montevideo respectively rises by (7.3±1.8)×10-6 m and (4.7±2.6)×10-6 m per 1 m3 s−1 streamflow increase. These observational results are consistent with simple theories for the coastal sea-level response to streamflow forcing, suggesting a causal relationship between streamflow and sea level mediated by ocean dynamics. Findings advance understanding of local, regional, and global sea-level changes; clarify sea-level physics; inform future projections of coastal sea level and the interpretation of satellite data and proxy reconstructions; and highlight future research directions. Specifically, local and regional river effects should be accounted for in basin-scale and global mean sea-level budgets as well as reconstructions based on sparse tide-gauge records. 
    more » « less
  3. Abstract Sea level rise (SLR) is a global concern in the era of climate change, prompting the exploration of interventions such as solar radiation modification through stratospheric aerosol injection (SAI). This intervention could affect the physical system in various ways. The present study analyzes the global and regional impacts of SAI using ARISE-SAI-1.5 (SAI-1.5) simulations with the Community Earth System Model 2. We calculated the regional thermosteric sea level under different scenarios. After validating our methodology for sea level components over the period 1995–2014, we determined changes in sea level variables under both SAI-1.5 and the underlying Shared Socioeconomic Pathway 2–4.5 (SSP2-4.5) relative to the reference period (1995–2014). In contrast to sea surface temperature, which under this SAI strategy should be maintained near 1.5 °C above preindustrial values, global SLR would continue increasing under SAI-1.5. However, SAI would significantly impact thermal expansion in SSP2-4.5 simulations, reducing the global long-term sea level trend from 3.7 ± 0.03 mm yr−1for SSP2-4.5–1.9 ± 0.04 mm yr−1for SAI-1.5, a 49% reduction. The associated ocean heat content is reduced from (2.0 ± 0.3) × 1022J yr−1under SSP2-4.5 to (1.17 ± 0.30) × 1022J yr−1under SAI, a 42% reduction. Additionally, SAI would impact the regional and global ocean by reducing the SLR rate. These findings underscore the potential of SAI as a climate intervention strategy with significant implications for sea level change. 
    more » « less
  4. Abstract Sea-level rise is a significant indicator of broader climate changes, and the time of emergence concept can be used to identify when modern rates of sea-level rise emerged above background variability. Yet a range of estimates of the timing persists both globally and regionally. Here, we use a global database of proxy sea-level records of the Common Era (0–2000 CE) and show that globally, it is very likely that rates of sea-level rise emerged above pre-industrial rates by 1863 CE (P= 0.9; range of 1825 [P= 0.66] to 1873 CE [P= 0.95]), which is similar in timing to evidence for early ocean warming and glacier melt. The time of emergence in the North Atlantic reveals a distinct spatial pattern, appearing earliest in the mid-Atlantic region (1872–1894 CE) and later in Canada and Europe (1930–1964 CE). Regional and local sea-level changes occurring over different time periods drive the spatial pattern in emergence, suggesting regional processes underlie centennial-timescale sea-level variability over the Common Era. 
    more » « less
  5. Barystatic sea level rise caused by the addition of freshwater to the ocean from melting ice can in principle be recorded by a reduction in seawater salinity, but detection of this signal has been hindered by sparse data coverage and the small trends compared to natural variability. Here, we develop an autoregressive machine learning method to estimate salinity changes in the global ocean from 2001-2019 that reduces uncertainties in ocean freshening trends by a factor of four compared to previous estimates. We find that the ocean mass rose by 13,000±3,000 Gt from 2001-2019, implying a barystatic sea level rise of 2.0±0.5 mm/yr. Combined with sea level rise of 1.3±0.1 mm/yr due to ocean thermal expansion, these results suggest that global mean sea level rose by 3.4±0.6 mm/yr from 2001-2019. These results provide an important validation of remote-sensing measurements of ocean mass changes, global sea level rise, and global ice budgets. 
    more » « less