skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two-dimensional extreme skin depth engineering for CMOS photonics
Extreme skin depth engineering (e-skid) can be applied to integrated photonics to manipulate the evanescent field of a waveguide. Here we demonstrate thate-skidcan be implemented in two directions in order to deterministically engineer the evanescent wave allowing for dense integration with enhanced functionalities. In particular, by increasing the skin depth, we enable the creation of two-dimensional (2D)e-skiddirectional couplers with large gaps and operational bandwidth. Here we experimentally validate 2De-skidfor integrated photonics in a complementary metal–oxide semiconductor (CMOS) photonics foundry and demonstrate strong coupling with a gap of 1.44 µm.  more » « less
Award ID(s):
1810282
PAR ID:
10218635
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of the Optical Society of America B
Volume:
38
Issue:
4
ISSN:
0740-3224; JOBPDE
Format(s):
Medium: X Size: Article No. 1307
Size(s):
Article No. 1307
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultraviolet and visible integrated photonics enable applications in quantum information, sensing, and spectroscopy, among others. Few materials support low-loss photonics into the UV, and the relatively low refractive index of known depositable materials limits the achievable functionality. Here, we present a high-index integrated photonics platform based on HfO2and Al2O3composites deposited via atomic layer deposition (ALD) with low loss in the visible and near UV. We show that Al2O3incorporation dramatically decreases bulk loss compared to pure HfO2, consistent with inhibited crystallization due to the admixture of Al2O3. Composites exhibit refractive indexnfollowing the average of that of HfO2and Al2O3, weighted by the HfO2fractional compositionx. Atλ = 375 nm, composites withx = 0.67 exhibitn = 2.01, preserving most of HfO2’s significantly higher index, and 3.8(7) dB/cm material loss. We further present fully etched and cladded waveguides, grating couplers, and ring resonators, realizing a single-mode waveguide loss of 0.25(2) dB/cm inferred from resonators of 2.6 million intrinsic quality factor atλ = 729 nm, 2.6(2) dB/cm atλ = 405 nm, and 7.7(6) dB/cm atλ = 375 nm. We measure the composite’s thermo-optic coefficient (TOC) to be 2.44(3) × 10−5RIU/°C nearλ = 397 nm. This work establishes (HfO2)x(Al2O3)1−xcomposites as a platform amenable to integration for low-loss, high-index photonics spanning the UV to NIR. 
    more » « less
  2. Claesen, Jan (Ed.)
    ABSTRACT The human skin microbiome is a diverse ecosystem that can help prevent infections by producing biomolecules and peptides that inhibit growth and virulence of bacterial pathogens.Staphylococcus aureusis a major human pathogen responsible for diseases that range from acute skin and soft tissue infections to life-threatening septicemia. Its ability to form biofilms is a key virulence factor contributing to its success as a pathogen as well as to its increased antimicrobial resistance. Here, we investigated the ability of bacterial skin commensals to produce molecules that inhibitS. aureusbiofilm formation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identified 77 human skin microbiome bacterial isolates fromStaphylococcusandBacillusgenera. Metabolites from cell-free concentrated media (CFCM) from 26 representative isolates were evaluated for their ability to inhibit biofilm formation by both methicillin-resistant (MRSA) and methicillin-sensitive (MSSA)S. aureusstrains. CFCM, derived from most of the isolates, inhibited biofilm formation to varying extents but did not inhibit planktonic growth ofS. aureus. Size fractionation of the CFCM of threeS.epidermidisisolates indicated that they produce different bioactive molecules. Cluster analysis, based on either MALDI-TOF mass spectra or whole-genome sequencing draft genomes, did not show clear clusters associated with levels of biofilm inhibition amongS. epidermidisstrains. Finally, similar biosynthetic gene clusters were detected in allS. epidermidisstrains analyzed. These findings indicate that several bacterial constituents of the human skin microbiome display antibiofilmin vitroactivity, warranting further investigation on their potential as novel therapeutic agents. IMPORTANCEThe skin is constantly exposed to the environment and consequently to numerous pathogens. The bacterial community that colonizes healthy skin is thought to play an important role in protecting us against infections.S. aureusis a leading cause of death worldwide and is frequently involved in several types of infections, including skin and soft tissue infections. Its ability to adhere to surfaces and produce biofilms is considered an important virulence factor. Here, we analyzed the activity of different species of bacteria isolated from healthy skin onS. aureusbiofilm formation. We found that some species ofStaphylococcusandBacilluscan reduceS. aureusbiofilm formation, although a generally lower level of inhibitory activity was observed compared toS. epidermidisisolates. AmongS. epidermidisisolates, strength of activity was dependent on the strain. Our data highlight the importance of mining the skin microbiome for isolates that could help combat skin pathogens. 
    more » « less
  3. Rudi, Knut (Ed.)
    ABSTRACT Functional studies of host-microbe interactions benefit from natural model systems that enable the exploration of molecular mechanisms at the host-microbe interface. BioluminescentVibrio fischericolonize the light organ of the Hawaiian bobtail squid,Euprymna scolopes, and this binary model has enabled advances in understanding host-microbe communication, colonization specificity,in vivobiofilms, intraspecific competition, and quorum sensing. The hummingbird bobtail squid,Euprymna berryi,can be generationally bred and maintained in lab settings and has had multiple genes deleted by CRISPR approaches. The prospect of expanding the utility of the light organ model system by producing multigenerational host lines led us to determine the extent to which theE. berryilight organ symbiosis parallels known processes inE. scolopes. However, the nature of theE. berryilight organ, including its microbial constituency and specificity for microbial partners, has not been examined. In this report, we isolated bacteria fromE. berryianimals and tank water. Assays of bacterial behaviors required in the host, as well as host responses to bacterial colonization, illustrate largely parallel phenotypes inE. berryiandE. scolopeshatchlings. This study revealsE. berryito be a valuable comparative model to complement studies inE. scolopes.IMPORTANCEMicrobiome studies have been substantially advanced by model systems that enable functional interrogation of the roles of the partners and the molecular communication between those partners. TheEuprymna scolopes-Vibrio fischerisystem has contributed foundational knowledge, revealing key roles for bacterial quorum sensing broadly and in animal hosts, for bacteria in stimulating animal development, for bacterial motility in accessing host sites, and forin vivobiofilm formation in development and specificity of an animal’s microbiome.Euprymna berryiis a second bobtail squid host, and one that has recently been shown to be robust to laboratory husbandry and amenable to gene knockout. This study identifiesE. berryias a strong symbiosis model host due to features that are conserved with those ofE. scolopes, which will enable the extension of functional studies in bobtail squid symbioses. 
    more » « less
  4. This paper is about semantic regular expressions (SemREs). This is a concept that was recently proposed by Smore (Chen et al. 2023) in which classical regular expressions are extended with a primitive to query external oracles such as databases and large language models (LLMs). SemREs can be used to identify lines of text containing references to semantic concepts such as cities, celebrities, political entities, etc. The focus in their paper was on automatically synthesizing semantic regular expressions from positive and negative examples. In this paper, we study themembership testing problem. First, we present a two-pass NFA-based algorithm to determine whether a stringwmatches a SemRErinO(|r|2|w|2+ |r| |w|3) time, assuming the oracle responds to each query in unit time. In common situations, where oracle queries are not nested, we show that this procedure runs inO(|r|2|w|2) time. Experiments with a prototype implementation of this algorithm validate our theoretical analysis, and show that the procedure massively outperforms a dynamic programming-based baseline, and incurs a ≈ 2 × overhead over the time needed for interaction with the oracle. Second, we establish connections between SemRE membership testing and the triangle finding problem from graph theory, which suggest that developing algorithms which are simultaneously practical and asymptotically faster might be challenging. Furthermore, algorithms for classical regular expressions primarily aim to optimize their time and memory consumption. In contrast, an important consideration in our setting is to minimize the cost of invoking the oracle. We demonstrate an Ω(|w|2) lower bound on the number of oracle queries necessary to make this determination. 
    more » « less
  5. The evolutionary histories of many polyploid plant species are difficult to resolve due to a complex interplay of hybridization, incomplete lineage sorting, and missing diploid progenitors. In the case of octoploid strawberry with four subgenomes designated ABCD, the identities of the diploid progenitors for subgenomes C and D have been subject to much debate. By integrating new sequencing data from North American diploids with reticulate phylogeny and admixture analyses, we uncovered introgression from an extinct or unsampled species in the clade ofFragaria viridis,Fragaria nipponica, andFragaria nilgerrensisinto the donor of subgenome A of octoploidFragariaprior to its divergence fromF. vescasubsp. bracteata. We also detected an introgression event fromF. iinumaeinto an ancestor ofF. nipponicaandF. nilgerrensis.Using an LTR-age-distribution-based approach, we estimate that the octoploid and its intermediate hexaploid and tetraploid ancestors emerged approximately 0.8, 2, and 3 million years ago, respectively. These results provide an explanation for previous reports ofF. viridisandF. nipponicaas donors of the C and D subgenomes and suggest a greater role than previously thought for homoploid hybridization in the diploid progenitors of octoploid strawberry. The integrated set of approaches used here can help advance polyploid genome analysis in other species where hybridization and incomplete lineage sorting obscure evolutionary relationships. 
    more » « less