skip to main content


Title: Synthetic glycosidases for the precise hydrolysis of oligosaccharides and polysaccharides
Glycosidases are an important class of enzymes for performing the selective hydrolysis of glycans. Although glycans can be hydrolyzed in principle by acidic water, hydrolysis with high selectivity using nonenzymatic catalysts is an unachieved goal. Molecular imprinting in cross-linked micelles afforded water-soluble polymeric nanoparticles with a sugar-binding boroxole in the imprinted site. Post-modification installed an acidic group near the oxygen of the targeted glycosidic bond, with the acidity and distance of the acid varied systematically. The resulting synthetic glycosidase hydrolyzed oligosaccharides and polysaccharides in a highly controlled fashion simply in hot water. These catalysts not only broke down amylose with similar selectivities to those of natural enzymes, but they also could be designed to possess selectivity not available with biocatalysts. Substrate selectivity was mainly determined by the sugar residues bound within the active site, including their spatial orientations. Separation of the product was accomplished through in situ dialysis, and the catalysts left behind could be used multiple times with no signs of degradation. This work illustrates a general method to construct synthetic glycosidases from readily available building blocks via self-assembly, covalent capture, and post-modification. In addition, controlled, precise, one-step hydrolysis is an attractive way to prepare complex glycans from naturally available carbohydrate sources.  more » « less
Award ID(s):
1708526
NSF-PAR ID:
10218663
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
1
ISSN:
2041-6520
Page Range / eLocation ID:
374 to 383
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The challenge of site-selectivity must be overcome in many chemical research contexts, including selective functionalization in complex natural products and labeling of one biomolecule in a living system. Synthetic catalysts incorporating molecular recognition domains can mimic naturally-occurring enzymes to direct a chemical reaction to a particular instance of a functional group. We propose that DNA-conjugated small molecule catalysts (DCats), prepared by tethering a small molecule catalyst to a DNA aptamer, are a promising class of reagents for site-selective transformations. Specifically, a DNA-imidazole conjugate able to increase the rate of ester hydrolysis in a target ester by >100-fold compared with equimolar untethered imidazole was developed. Other esters are unaffected. Furthermore, DCat-catalyzed hydrolysis follows enzyme-like kinetics and a stimuli-responsive variant of the DCat enables programmable “turn on” of the desired reaction. 
    more » « less
  2. All living cells generate structurally complex and compositionally diverse spectra of glycans and glycoconjugates, critical for organismal evolution, development, functioning, defense, and survival. Glycosyltransferases (GTs) catalyze the glycosylation reaction between activated sugar and acceptor substrate to synthesize a wide variety of glycans. GTs are distributed among more than 130 gene families and are involved in metabolic processes, signal pathways, cell wall polysaccharide biosynthesis, cell development, and growth. Glycosylation mainly takes place in the endoplasmic reticulum (ER) and Golgi, where GTs and glycosidases involved in this process are distributed to different locations of these compartments and sequentially add or cleave various sugars to synthesize the final products of glycosylation. Therefore, delivery of these enzymes to the proper locations, the glycosylation sites, in the cell is essential and involves numerous secretory pathway components. This review presents the current state of knowledge about the mechanisms of protein trafficking between ER and Golgi. It describes what is known about the primary components of protein sorting machinery and trafficking, which are recognition sites on the proteins that are important for their interaction with the critical components of this machinery. 
    more » « less
  3. Abstract

    The hydrolysis of extremely stable peptide and phosphoester bonds by metalloenzymes is of great interest in biotechnology and industry. However, due to various shortcomings only a handful of these enzymes have been used for industrial applications. Therefore, in the last two decades intensive scientific efforts have been made in rational development of small molecules to imitate the activities of natural enzymes. Despite these efforts, their currently available synthetic analogues are inferior in terms of selectivity, catalytic rate, and turnover and the designing of efficient artificial metalloenzymes remains a distant goal. This is a challenging area of research that necessitates a rigorous integration between experiments and theory. The realization of this goal requires knowledge of the catalytic activities of both enzymes and their existing analogues and an effective fusion of that knowledge. This article reviews several studies in which a plethora of computational techniques have been successfully employed to investigate the functioning of two chemically promiscuous mono‐ and binuclear metalloenzymes (insulin degrading enzyme and glycerophosphodiesterase) and two synthetic analogues. These studies will help us derive fundamental principles of peptide and phosphoester hydrolysis and pave the way to design efficient small molecule catalysts for these reactions.

    This article is categorized under:

    Structure and Mechanism > Reaction Mechanisms and Catalysis

     
    more » « less
  4. Enzymes have substrate‐tailored active sites with optimized molecular recognition and catalytic features. Although many different platforms have been used by chemists to construct enzyme mimics, it is challenging to tune the structure of their active sites systematically. By molecularly imprinting template molecules within doubly cross‐linked micelles, we created protein‐sized nanoparticles with catalytically functionalized binding sites. These enzyme mimics accelerated the hydrolysis of activated esters thousands of times over the background reaction, whereas the analogous catalytic group (a nucleophilic pyridyl derivative) was completely inactive in bulk solution under the same conditions. The template molecules directly controlled the size and shape of the active site and modulated the resulting catalyst's performance at different pHs. The synthetic catalysts displayed Michaelis–Menten enzymatic behavior and, interestingly, reversed the intrinsic reactivity of the activated esters during the hydrolysis.

     
    more » « less
  5. Self-assembled metallacyles and cages formed via coordination chemistry have been used as catalysts to enforce 4H + /4e − reduction of oxygen to water with an emphasis on attenuating the formation of hydrogen peroxide. That said, the kinetically favored 2H + /2e − reduction to H 2 O 2 is critically important to industry. In this work we report the synthesis, characterization, and electrochemical benchmarking of a hexa-porphyrin cube which catalyses the electrochemical reduction of molecular oxygen to hydrogen peroxide. An established sub-component self-assembly approach was used to synthesize the cubic free-base porphryin topologies from 2-pyridinecarboxaldehyde, tetra-4-aminophenylporphryin (TAPP), and Fe(OTf) 2 (OTf − = trifluoromethansulfonate). Then, a tandem metalation/transmetallation was used to introduce Co( ii ) into the porphyrin faces of the cube, and exchange with the Fe( ii ) cations at the vertices, furnishing a tetrakaideca cobalt cage. Electron paramagnetic resonance studies on a Cu( ii )/Fe( ii ) analogue probed radical interactions which inform on electronic structure. The efficacy and selectivity of the CoCo-cube as a catalyst for hydrogen peroxide generation was investigated using hydrodynamic voltammetry, revealing a higher selectivity than that of a mononuclear Co( ii ) porphyrin (83% versus ∼50%) with orders of magnitude enhancement in standard rate constant ( k s = 2.2 × 10 2 M −1 s −1 versus k s = 3 × 10 0 M −1 s −1 ). This work expands the use of coordination-driven self-assembly beyond ORR to water by exploiting post-synthetic modification and structural control that is associated with this synthetic method. 
    more » « less