skip to main content


Title: Spectrum Misuse Detection in Cooperative Wireless Networks
The success of dynamic spectrum sharing in wireless networks depends on reliable automated enforcement of spectrum access policies. In this paper, a crowdsourced approach is used to select volunteers to detect spectrum misuse. Volunteer selection is based on multiple criteria, including their reputation, likelihood of being in a region and ability to effectively detect channel misuse. We formulate the volunteer selection problem as a stable matching problem, whereby, volunteers' monitoring preferences are matched to channels' attributes. Given a set of volunteers, the objective is to ensure maximum coverage of the spectrum enforcement area and accurate detection of spectrum access violation of all channels in the area. The two matching algorithms, Volunteer Matching (VM) and Reverse Volunteer Matching (RVM) are based on variants of the Gale-Shapley algorithm for stable matching. We also propose two Hybrid algorithms, HYBRID-VM and HYBRID-RVM that augment the matching algorithms with a Secretary-based algorithm to overcome the shortcomings of the individual vanilla algorithms. Simulation results show that volunteer selection by using HYBRID-VM gives better coverage of region (better by 19.2% when compared to threshold-based Secretary algorithm), better accuracy of detection and better volunteer happiness when compared to the other algorithms that are tested.  more » « less
Award ID(s):
1642949
NSF-PAR ID:
10218691
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
GLOBECOM 2020 - 2020 IEEE Global Communications Conference
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To address the scarcity of spectrum, FCC mandated the dynamic sharing of spectrum among the different tiers of users. The success of spectrum sharing, however, relies on the automated enforcement of spectrum policies. We focus on ex post spectrum enforcement during/after the occurrence of a potentially harmful event, but before/after an actual harm has occurred. The major challenges addressed by us are to ensure maximum channel coverage in a given region of enforcement, accurate and reliable detection of enforcement, and selection of an efficient algorithm to select entities for detection of violation. We adopt a crowdsourced methodology to monitor spectrum usage. We ensure maximum coverage of the given area by dividing it into equal-sized regions and solve the enforcement problem by a divide and conquer mechanism over the entire region. We use a variant of the Multiple Choice Secretary algorithm to select volunteers. We finally simulate the enforcement framework and analyze the results. 
    more » « less
  2. null (Ed.)
    Cooperative wireless networks, enabled by Cognitive Radios, facilitate mobile users to dynamically share access to spectrum. However, spectrum bands can be accessed illegitimately by malicious users. Therefore, the success of dynamic spectrum sharing relies on automated enforcement of spectrum policies. While the focus has been on ex ante spectrum enforcement, this work explores new approaches to address efficient ex post spectrum enforcement. The main objective of this work is to ensure maximum coverage of the area of enforcement and accurate detection of spectrum access violation. The first objective is achieved with the help of Lloyd's algorithm to divide the enforcement area into a set of uniformly sized coverage regions. The interference detection accuracy is achieved through crowdsourcing of the spectrum access monitoring to volunteers, based on their computational capabilities, location attributes and reputation. A simulation framework was developed in CSIM19 (C++ version) to analyze the performance of the proposed system over the entire area of enforcement. The results show that the proposed scheme ensures efficient coverage of all the channels and regions in the area of enforcement and a high average accuracy of detection. 
    more » « less
  3. null (Ed.)
    The emerging satellite videos provide the opportunity to detect moving objects and track their trajectories, which were not possible for remotely sensed imagery with limited temporal resolution. So far, most studies using satellite video data have been concentrated on traffic monitoring through detecting and tracking moving cars, whereas the studies on other moving objects such as airplanes are limited. In this paper, an integrated method for monitoring moving airplanes from a satellite video is proposed. First, we design a normalized frame difference labeling (NFDL) algorithm to detect moving airplanes, which adopts a non-recursive strategy to deliver stable detection throughout the whole video. Second, the template matching (TM) technique is utilized for tracking the detected moving airplanes in the frame sequence by improved similarity measures (ISMs) with better rotation invariance and model drift suppression ability. Template matching with improved similarity measures (TM-ISMs) is further implemented to handle the leave-the-scene problem. The developed method is tested on a satellite video to detect and track eleven moving airplanes. Our NFDL algorithm successfully detects all the moving airplanes with the highest F1 score of 0.88 among existing algorithms. The performance of TM-ISMs is compared with both its traditional counterparts and other state-of-the-art tracking algorithms. The experimental results show that TM-ISMs can handle both rotation and leave-the-scene problems. Moreover, TM-ISMs achieve a very high tracking accuracy of 0.921 and the highest tracking speed of 470.62 frames per second. 
    more » « less
  4. In recent years, satellites capable of capturing videos have been developed and launched to provide high definition satellite videos that enable applications far beyond the capabilities of remotely sensed imagery. Moving object detection and moving object tracking are among the most essential and challenging tasks, but existing studies have mainly focused on vehicles. To accurately detect and then track more complex moving objects, specifically airplanes, we need to address the challenges posed by the new data. First, slow-moving airplanes may cause foreground aperture problem during detection. Second, various disturbances, especially parallax motion, may cause false detection. Third, airplanes may perform complex motions, which requires a rotation-invariant and scale-invariant tracking algorithm. To tackle these difficulties, we first develop an Improved Gaussian-based Background Subtractor (IPGBBS) algorithm for moving airplane detection. This algorithm adopts a novel strategy for background and foreground adaptation, which can effectively deal with the foreground aperture problem. Then, the detected moving airplanes are tracked by a Primary Scale Invariant Feature Transform (P-SIFT) keypoint matching algorithm. The P-SIFT keypoint of an airplane exhibits high distinctiveness and repeatability. More importantly, it provides a highly rotation-invariant and scale-invariant feature vector that can be used in the matching process to determine the new locations of the airplane in the frame sequence. The method was tested on a satellite video with eight moving airplanes. Compared with state-of-the-art algorithms, our IPGBBS algorithm achieved the best detection accuracy with the highest F1 score of 0.94 and also demonstrated its superiority on parallax motion suppression. The P-SIFT keypoint matching algorithm could successfully track seven out of the eight airplanes. Based on the tracking results, movement trajectories of the airplanes and their dynamic properties were also estimated. 
    more » « less
  5. Public participation in scientific activities, often called citizen science, offers a possibility to collect and analyze an unprecedentedly large amount of data. However, diversity of volunteers poses a challenge to obtain accurate information when these data are aggregated. To overcome this problem, we propose a classification algorithm using Bayesian inference that harnesses diversity of volunteers to improve data accuracy. In the algorithm, each volunteer is grouped into a distinct class based on a survey regarding either their level of education or motivation to citizen science. We obtained the behavior of each class through a training set, which was then used as a prior information to estimate performance of new volunteers. By applying this approach to an existing citizen science dataset to classify images into categories, we demonstrate improvement in data accuracy, compared to the traditional majority voting. Our algorithm offers a simple, yet powerful, way to improve data accuracy under limited effort of volunteers by predicting the behavior of a class of individuals, rather than attempting at a granular description of each of them.

     
    more » « less