skip to main content


Title: Matchmaking of Volunteers and Channels for Dynamic Spectrum Access Enforcement
Cooperative wireless networks, enabled by Cognitive Radios, facilitate mobile users to dynamically share access to spectrum. However, spectrum bands can be accessed illegitimately by malicious users. Therefore, the success of dynamic spectrum sharing relies on automated enforcement of spectrum policies. While the focus has been on ex ante spectrum enforcement, this work explores new approaches to address efficient ex post spectrum enforcement. The main objective of this work is to ensure maximum coverage of the area of enforcement and accurate detection of spectrum access violation. The first objective is achieved with the help of Lloyd's algorithm to divide the enforcement area into a set of uniformly sized coverage regions. The interference detection accuracy is achieved through crowdsourcing of the spectrum access monitoring to volunteers, based on their computational capabilities, location attributes and reputation. A simulation framework was developed in CSIM19 (C++ version) to analyze the performance of the proposed system over the entire area of enforcement. The results show that the proposed scheme ensures efficient coverage of all the channels and regions in the area of enforcement and a high average accuracy of detection.  more » « less
Award ID(s):
1642949
NSF-PAR ID:
10218696
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To address the scarcity of spectrum, FCC mandated the dynamic sharing of spectrum among the different tiers of users. The success of spectrum sharing, however, relies on the automated enforcement of spectrum policies. We focus on ex post spectrum enforcement during/after the occurrence of a potentially harmful event, but before/after an actual harm has occurred. The major challenges addressed by us are to ensure maximum channel coverage in a given region of enforcement, accurate and reliable detection of enforcement, and selection of an efficient algorithm to select entities for detection of violation. We adopt a crowdsourced methodology to monitor spectrum usage. We ensure maximum coverage of the given area by dividing it into equal-sized regions and solve the enforcement problem by a divide and conquer mechanism over the entire region. We use a variant of the Multiple Choice Secretary algorithm to select volunteers. We finally simulate the enforcement framework and analyze the results. 
    more » « less
  2. null (Ed.)
    The success of dynamic spectrum sharing in wireless networks depends on reliable automated enforcement of spectrum access policies. In this paper, a crowdsourced approach is used to select volunteers to detect spectrum misuse. Volunteer selection is based on multiple criteria, including their reputation, likelihood of being in a region and ability to effectively detect channel misuse. We formulate the volunteer selection problem as a stable matching problem, whereby, volunteers' monitoring preferences are matched to channels' attributes. Given a set of volunteers, the objective is to ensure maximum coverage of the spectrum enforcement area and accurate detection of spectrum access violation of all channels in the area. The two matching algorithms, Volunteer Matching (VM) and Reverse Volunteer Matching (RVM) are based on variants of the Gale-Shapley algorithm for stable matching. We also propose two Hybrid algorithms, HYBRID-VM and HYBRID-RVM that augment the matching algorithms with a Secretary-based algorithm to overcome the shortcomings of the individual vanilla algorithms. Simulation results show that volunteer selection by using HYBRID-VM gives better coverage of region (better by 19.2% when compared to threshold-based Secretary algorithm), better accuracy of detection and better volunteer happiness when compared to the other algorithms that are tested. 
    more » « less
  3. Data are available for download at http://arcticdata.io/data/10.18739/A2KW57K57 Permafrost can be indirectly detected via remote sensing techniques through the presence of ice-wedge polygons, which are a ubiquitous ground surface feature in tundra regions. Ice-wedge polygons form through repeated annual cracking of the ground during cold winter days. In spring, the cracks fill in with snowmelt water, creating ice wedges, which are connected across the landscape in an underground network and that can grow to several meters depth and width. The growing ice wedges push the soil upwards, forming ridges that bound low-centered ice-wedge polygons. If the top of the ice wedge melts, the ground subsides and the ridges become troughs and the ice-wedge polygons become high-centered. Here, a Convolutional Neural Network is used to map the boundaries of individual ice-wedge polygons based on high-resolution commercial satellite imagery obtained from the Polar Geospatial Center. This satellite imagery used for the detection of ice-wedge polygons represent years between 2001 and 2021, so this dataset represents ice-wedge polygons mapped from different years. This dataset does not include a time series (i.e. same area mapped more than once). The shapefiles are masked, reprojected, and processed into GeoPackages with calculated attributes for each ice-wedge polygon such as circumference and width. The GeoPackages are then rasterized with new calculated attributes for ice-wedge polygon coverage such a coverage density. This release represents the region classified as “high ice” by Brown et al. 1997. The dataset is available to explore on the Permafrost Discovery Gateway (PDG), an online platform that aims to make big geospatial permafrost data accessible to enable knowledge-generation by researchers and the public. The PDG project creates various pan-Arctic data products down to the sub-meter and monthly resolution. Access the PDG Imagery Viewer here: https://arcticdata.io/catalog/portals/permafrost Data limitations in use: This data is part of an initial release of the pan-Arctic data product for ice-wedge polygons, and it is expected that there are constraints on its accuracy and completeness. Users are encouraged to provide feedback regarding how they use this data and issues they encounter during post-processing. Please reach out to the dataset contact or a member of the PDG team via support@arcticdata.io. 
    more » « less
  4. Autonomous vehicles (AVs) are on the verge of changing the transportation industry. Despite the fast development of autonomous driving systems (ADSs), they still face safety and security challenges. Current defensive approaches usually focus on a narrow objective and are bound to specific platforms, making them difficult to generalize. To solve these limitations, we propose AVMaestro, an efficient and effective policy enforcement framework for full-stack ADSs. AVMaestro includes a code instrumentation module to systematically collect required information across the entire ADS, which will then be feed into a centralized data examination module, where users can utilize the global information to deploy defensive methods to protect AVs from various threats. AVMaestro is evaluated on top of Apollo-6.0 and experimental results confirm that it can be easily incorporated into the original ADS with almost negligible run-time delay. We further demonstrate that utilizing the global information can not only improve the accuracy of existing intrusion detection methods, but also potentially inspire new security applications. 
    more » « less
  5. The next-generation spectrum access system (SAS) for the Citizens Broadband Radio Service band is equipped with environmental sensors (ESCs) to detect the presence of noninformed incumbent users, which allows the SAS to dynamically reassign spectrum resource for low privilege users to avoid interference. However, the performance of existing single-node detection model is limited by the sensor’s geo-locations; whereas a naive distributed sensing network with improved detection accuracy introduces a high bandwidth overhead due to the frequent communication of spectrum data. In addition, many existing coherent spectrum sensing methods are not feasible for CBRS band due to the unknown operational characteristics of incumbent military wireless applications. To address these issues, we propose a machine learning based non-coherent spectrum sensing system: (F)eder(a)ted (I)ncumbent Detection in CB(R)S (FaIR). FaIR leverages a communication-efficient distributed learning framework, federated learning, for ESCs to collaborate and train a data-driven machine learning model for incumbent detection under minimal communication bandwidth. Our preliminary results show that the federated learning method can exploit the spatial diversity of ESCs and obtain an improved detection model comparing to a naive distributed sensing and centralized model framework. We evaluate the FaIR model with a variety of spectrum waveforms at varying SNRs. Our experiments showed that FaIR improves the average detection accuracy compared to the single-node method, using a fraction of the bandwidth compared to the naive multinode method. 
    more » « less