Nucleate boiling is perhaps one of the most efficient cooling methodologies due to its large heat flux with a relatively low superheat. Nucleate boiling often occurs on surfaces oriented at different angles; therefore, understanding the behavior of bubble growth on various surface orientations is of importance. Despite significant advancement, numerous questions remain regarding the fundamentals of bubble growth mechanisms on oriented surfaces, a major source of enhanced heat dissipation. This work aims to accurately measure three-dimensional (3D), space- and time-resolved, local liquid temperature distributions surrounding a growing bubble on oriented surfaces that quantify the heat transfer from the superheated liquid layer during bubble growth. The dual tracer laser-induced fluorescence thermometry technique combined with high-speed imaging captures transient 2D temperature distributions within a 0.3 ºC accuracy at a 30 μm resolution. The results show that the temperature close to the heated surface and bubble interface exhibits an acute transient behavior at the time of bubble departure, and the growing bubble works as a pump to remove heat from the surface with a temperature difference of up to 10 °C during its growth and departure. The experimental results are compared with data available in the literature to validate the accuracy of the technique. It was found that the heat transfer coefficient close to the bubble interface and heater is approximately 1.3 times higher than the heat transfer coefficient in the bulk liquid.
more »
« less
Evolution of Heat Transfer in Pool Boiling in Contaminated Water
Abstract Boiling heat transfer serves as an efficient mechanism to dissipate large amounts of thermal energy due to the latent heat of phase change. In academic studies, typically ultra-pure deionized (DI) water is used to avoid contamination. However, in industrial and commercial settings, the working fluid might be contaminated with sediments, dust, salts, or organic matter. Long-term boiling processes in non-DI water cause substantial build-up of a stable layer of deposit that dramatically reduces the heat transfer coefficient. Therefore, heating applications in a contaminated medium demand strategies to prevent such fouling. Here, we studied the use of lubricant infused surfaces (LIS) and their ability to possibly minimize the deposition of calcium sulfate. Aluminum samples were infused with Krytox 102 oil and the heat transfer coefficient was investigated at a vertical and horizontal surface orientation. Fouling effects were introduced by pool boiling for 7.5 hours in a 6.97 mM calcium sulfate solution at constant heat flux. Heat flux curves for both plain aluminum and LIS were calibrated before contamination. Initially, the LIS was unable to support a nucleate phase and transitioned directly from liquid convection to film boiling heat transfer. Upon partial degradation of the lubricant layer during long-run experiments, nucleate boiling ensued. Over 7.5 hours, the heat transfer coefficient of each sample (Al and LIS) degraded between 5.4% and 7.9% with no significant correlation with either lubricant treatment or surface orientation. Post boiling profilometry was conducted on each sample to characterize the thickness and distribution of the calcium sulfate layer. In these experiments, the plain aluminum surface outperformed the LIS at both orientations in minimizing calcium layer thickness. The LIS oriented vertically outperformed the LIS oriented horizontally.
more »
« less
- Award ID(s):
- 1856722
- PAR ID:
- 10218708
- Date Published:
- Journal Name:
- Proceedings of the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels
- Page Range / eLocation ID:
- ICNMM2020-1041
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Extensive research has been conducted to resolve small-scale microlayer and bubble nucleation and departure processes in flow boiling, building on controlled pool boiling studies. Large-scale two-phase flow structures, such as Taylor bubbles, are known to locally modify transport due to their wakes and varying surrounding liquid film thickness. However, the effect of interaction of such large-scale flow processes with bubble nucleation is not yet well characterized. Wakes may drive premature nucleating bubble departure, or conversely, suppress boiling due to boundary layer quenching, significantly affecting overall heat transfer. To explore such phenomena, a two-phase flow boiling visualization facility is developed to collect simultaneous high-speed visualization and infrared (IR) thermal imaging temperature distribution data. The test cell channel is 420 mm long with a 10 mm × 10 mm internal square-cross section. A transparent conductive indium tin oxide (ITO) coated sapphire window serves as a heater and IR interface for measuring the internal wall temperature. The facility is charged with a low boiling point fluid (HFE7000) to reduce uncertainties from heat loss to the laboratory environment. Vertical saturated flow boiling wake-nucleation interaction experiments are performed for varying liquid volume flow rates (0.5 − 1.5 L min-1, laminar-to-turbulent Re) and heat fluxes (0 − 100 kW m-2). Discrete vapor slugs are injected to explore interactions with nucleate boiling processes. By measuring film heater power, surface temperature distributions, and pressures, local instantaneous heat transfer coefficients (HTC) can be obtained. Results will be applied to assess simulations at matched conditions for void fraction, and size statistics of flow structures.more » « less
-
Abstract Jet impingement can be particularly effective for removing high heat fluxes from local hotspots. Two-phase jet impingement cooling combines the advantage of both the nucleate boiling heat transfer with the single-phase sensible cooling. This study investigates two-phase submerged jet impingement cooling of local hotspots generated by a diode laser in a 100 nm thick Hafnium (Hf) thin-film on glass. The jet/nozzle diameter is ∼1.2 mm and the normal distance between the nozzle outlet and the heated surface is ∼3.2 mm. Novec 7100 is used as the coolant and the Reynolds numbers at the jet nozzle outlet range from 250 to 5000. The hotspot area is ∼ 0.06 mm2 and the applied hotspot-to-jet heat flux ranges from 20 W/cm2 to 220 W/cm2. This heat flux range facilitates studies of both the single-phase and two-phase heat transport mechanisms for heat fluxes up to critical heat flux (CHF). The temporal evolution of the temperature distribution of the laser heated surface is measured using infrared (IR) thermometry. This study also investigates the nucleate boiling regime as a function of the distance between the hotspot center and the jet stagnation point. For example, when the hotspot center and the jet are co-aligned (x/D = 0), the CHF is found to be ∼ 177 W/cm2 at Re ∼ 5000 with a corresponding heat transfer coefficient of ∼58 kW/m2.K. While the CHF is ∼ 130 W/cm2 at Re ∼ 5000 with a jet-to-hotspot offset of x/D ≈ 4.2.more » « less
-
Abstract As technology becomes increasingly miniaturized, thermal management becomes challenging to keep devices away from overheating due to extremely localized heat dissipation. Two-phase cooling or flow boiling in microspaces utilizes the highly efficient thermal energy transport of phase change from liquid to vapor. However, the excessive consumption of liquid-phase by highly localized heat source causes the two-phase flow maldistribution, leading to a significantly reduced heat transfer coefficient, high-pressure loss, and limited flow rate. In this study, flow boiling in a two-dimensional (2D) microgap heat sink with a hydrophilic coating is investigated with bubble morphology, heat transfer, and pressure drop for conventional (nonhydrophilic) and hydrophilic heat sinks. The experiments are carried out on a stainless steel (SS) plate, having a microgap depth of 170 μm using de-ionized (DI) water at room temperature. Two different hydrophilic surfaces (partial and full channel shape) are fabricated on the heated surface to compare the thermal performance with the conventional surface. Vapor films and slugs are flushed quickly on the hydrophilic surfaces, resulting in heat transfer enhancement on the hydrophilic heat sink compared to the conventional heat sink. The channel hydrophilic heat sink shows better cooling performance and pressure stability as it provides a smooth route for the incoming water to cool the hot spot. Moreover, the artificial neural network (ANN) prediction of heat transfer coefficient shows a good agreement with the experimental results as data fit within ±5% average error.more » « less
-
ABSTRACT At low surface superheat levels, water droplets deposited on ZnO nanostructured surfaces vaporize primarily by conduction transport of heat from the solid heated surface to the liquid-vapor interface. As the superheat is increased beyond the onset of bub- ble nucleation threshold (ONB), an increasing number of active nucleation sites are observed within the evaporating droplet re- ducing the time required to completely evaporate the droplet. There were two primary objectives of this investigation; first, to determine how system parameters dictate when ONB occurs and how its heat transfer enhancement effect increases with superheat. The second was to develop a physics-inspired model equation for the evaporation time of a droplet on a nanostructured surface which accounts for effects of conduction transport in the liquid layer of the droplet and nucleate boiling. A shape factor model for conduction-dominated vaporiza- tion of the droplet was first constructed. A correction factor was introduced to account for deviation of the measured droplet evaporation times from the conduction-dominated model. The correction factor form was postulated using a modified form of the onset of nucleate boiling parameter used in the well-known model analysis developed by Hsu to predict onset of nucleation and active nucleation site range in a thermal boundary layer as- sociated with forced convection boiling. Droplet footprint radii were experimentally observed to be affected by superheat and an additional term was introduced to account for this phenomenon. A term was also introduced to include correlations for boiling to incorporate system properties. This modeling led to an evaporation time equation contain- ing numerical constants dictated by the idealizations from the physical modeling. To develop an improved empirical model equation, these numerical values were taken to be adjustable constants, and a genetic algorithm was used to determine the ad- justable constant values that best fit a data collection spanning wide variations of droplet size, surface apparent contact angle, and superheat level. The best-fit constants match the data to an absolute fractional error of 26%. The model equation developed in this study provides insight into the interaction between con- duction transport and nucleate boiling effects that can arise in droplet vaporization processes.more » « less