skip to main content


Title: Two-Dimensional Flow Boiling Characteristics With Wettability Surface in Microgap Heat Sink and Heat Transfer Prediction Using Artificial Neural Network
Abstract As technology becomes increasingly miniaturized, thermal management becomes challenging to keep devices away from overheating due to extremely localized heat dissipation. Two-phase cooling or flow boiling in microspaces utilizes the highly efficient thermal energy transport of phase change from liquid to vapor. However, the excessive consumption of liquid-phase by highly localized heat source causes the two-phase flow maldistribution, leading to a significantly reduced heat transfer coefficient, high-pressure loss, and limited flow rate. In this study, flow boiling in a two-dimensional (2D) microgap heat sink with a hydrophilic coating is investigated with bubble morphology, heat transfer, and pressure drop for conventional (nonhydrophilic) and hydrophilic heat sinks. The experiments are carried out on a stainless steel (SS) plate, having a microgap depth of 170 μm using de-ionized (DI) water at room temperature. Two different hydrophilic surfaces (partial and full channel shape) are fabricated on the heated surface to compare the thermal performance with the conventional surface. Vapor films and slugs are flushed quickly on the hydrophilic surfaces, resulting in heat transfer enhancement on the hydrophilic heat sink compared to the conventional heat sink. The channel hydrophilic heat sink shows better cooling performance and pressure stability as it provides a smooth route for the incoming water to cool the hot spot. Moreover, the artificial neural network (ANN) prediction of heat transfer coefficient shows a good agreement with the experimental results as data fit within ±5% average error.  more » « less
Award ID(s):
1707056
NSF-PAR ID:
10345247
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Heat Transfer
Volume:
143
Issue:
9
ISSN:
0022-1481
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two-phase thermal management offers cooling performance enhancement by an order of magnitude higher than single-phase flow due to the latent heat associated with phase change. Among the modes of phase-change, boiling can effectively remove massive amounts of heat flux from the surface by employing structured or 3D microporous coatings to significantly enlarge the interfacial surface area for improved heat transfer rate as well as increase the number of potential sites for bubble nucleation and departure. The bubble dynamics during pool boiling are often considered to be essential in predicting heat transfer performance, causing it to be a field of significant interest. While prior investigations seek to modulate the bubble dynamics through either active (e.g., surfactants, electricity) or passive means (e.g., surface wettability, microstructures), the utilization of an ordered microporous architecture to instigate desirable liquid and vapor flow field has been limited. Here, we investigate the bubble dynamics using various spatial patterns of inverse opal channels to induce preferential heat and mass flow site in highly-interconnected microporous media. A fully-coated inverse opal surface demonstrates the intrinsic boiling effects of a uniform microporous coating, which exhibits 156% enhancement in heat transfer coefficient in comparison to the polished silicon surface. The boiling heat transfer performances of spatially-variant inverse opal channels significantly differ based on the pitch spacings between the microporous channels, which dictate the bubble coalescent behaviors and bubble departure characteristics. The elucidated boiling heat transfer performances will provide engineering guidance toward designing optimal two-phase thermal management devices. 
    more » « less
  2. Surfaces with micrometer-scale pillars have shown great potential in delaying the boiling crisis and enhancing the critical heat flux (CHF). However, physical mechanisms enabling this enhancement remain unclear. This knowledge gap is due to a lack of diagnostics that allow elucidating how micro-pillars affect thermal transport phenomena on the engineered surface. In this study, for the first time, we are able to measure time-dependent temperature and heat flux distributions on a boiling surface with engineered micro-pillars using infrared thermometry. Using these data, we reveal the presence of an intra-pillar liquid layer, created by the nucleation of bubbles and partially refilled by capillary effects. However, contrarily to conventional wisdom, the energy removed by the evaporation of this liquid cannot explain the observed CHF enhancement. Yet, predicting its dry out is the key to delaying the boiling crisis. We achieve this goal using simple analytic models and demonstrate that this process is driven by conduction effects in the boiling substrates and, importantly, in the intra-pillar liquid layer itself. Importantly, these effects also control the wicking flow rate and its penetration length. The boiling crisis occurs when, by coalescing, the size of the intra-pillar liquid layer becomes too large for the wicking flow to reach its innermost region. Our study reveals and quantifies unidentified physical aspects, key to the performance optimization of boiling surfaces for cooling applications.

     
    more » « less
  3. This paper focuses on two-phase flow boiling of dielectric coolant HFE 7000 inside a copper multi-microchannel heat sink for high heat flux chip applications. The heat sink is composed of parallel microchannels, 200 μm wide, 2500 μm high, and 20 mm long, with 200-μm-thick fins separating the channels. The copper heat sink consists of almost 100 channels connected by a longitude groove with a nearly trapezoidal cross section. Coolant impinges down to the base at the groove and then goes along the microchannels. A copper block heater arrangement was used to mimic a computer chip with a footprint of 1”x1” (6.45 cm2). The base heat flux was varied from 7.75 W/cm2 to 96.1 W/cm2 and the mass flux from 547.6 to 958.4 kg/m2s, at a nominal saturation temperature of 54 °C. Heat transfer coefficients as high as 57.5 kW/m2K were reached, keeping the base temperature under 66 °C with a maximum of 21.9 kPa of pressure drop, for inlet subcooling of 5 degree and a coolant flow rate of 958.4 kg/m2. Effects of inner diameter of tubing on thermal performance and pressure drop are also discussed. It was observed that an increase of tubing inner diameter by 60 % can result in increase of heat transfer coefficient by 47.8 % and reduction in pressure drop by 63 %. 
    more » « less
  4. Abstract

    Development of smaller, faster, and more powerful electronic devices requires effective cooling strategies to efficiently remove ever‐greater heat. Phase‐change heat transfer such as boiling and evaporation has been widely exploited in various water‐energy industries owing to its efficient heat transfer mode. Despite extensive progress, it remains challenging to achieve the physical limit of flow boiling due to highly transitional and chaotic nature of multiphase flows as well as unfavorable boundary layer structures. Herein, a new strategy that promises to approach the physical limit of flow boiling heat transfer is reported. The flow boiling device with multiple channels is characterized with the design of micropinfin fences, which fundamentally transforms the boundary layer structures and imparts significantly higher heat transfer coefficient even at high heat flux conditions, in which boiling heat transfer is usually deteriorated due to the development of dryout starting from outlet regions and severe two‐phase flow instabilities. Moreover, the approaching of physical limit is achieved without elevating pressure drop.

     
    more » « less
  5.  
    more » « less