skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Unified Proof of Conjectures on Cycle Lengths in Graphs
Abstract In this paper, we prove a tight minimum degree condition in general graphs for the existence of paths between two given endpoints whose lengths form a long arithmetic progression with common difference one or two. This allows us to obtain a number of exact and optimal results on cycle lengths in graphs of given minimum degree, connectivity or chromatic number. More precisely, we prove the following statements by a unified approach: 1. Every graph $$G$$ with minimum degree at least $k+1$ contains cycles of all even lengths modulo $$k$$; in addition, if $$G$$ is $$2$$-connected and non-bipartite, then it contains cycles of all lengths modulo $$k$$. 2. For all $$k\geq 3$$, every $$k$$-connected graph contains a cycle of length zero modulo $$k$$. 3. Every $$3$$-connected non-bipartite graph with minimum degree at least $k+1$ contains $$k$$ cycles of consecutive lengths. 4. Every graph with chromatic number at least $k+2$ contains $$k$$ cycles of consecutive lengths. The 1st statement is a conjecture of Thomassen, the 2nd is a conjecture of Dean, the 3rd is a tight answer to a question of Bondy and Vince, and the 4th is a conjecture of Sudakov and Verstraëte. All of the above results are best possible.  more » « less
Award ID(s):
1954054 1929851 1664593
PAR ID:
10219091
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aichholzer, Oswin; Wang, Haitao (Ed.)
    A graph is said to contain K_k (a clique of size k) as a weak immersion if it has k vertices, pairwise connected by edge-disjoint paths. In 1989, Lescure and Meyniel made the following conjecture related to Hadwiger’s conjecture: Every graph of chromatic number k contains K_k as a weak immersion. We prove this conjecture for graphs with at most 1.4(k-1) vertices. As an application, we make some progress on Albertson’s conjecture on crossing numbers of graphs, according to which every graph G with chromatic number k satisfies cr(G) ≥ cr(K_k). In particular, we show that the conjecture is true for all graphs of chromatic number k, provided that they have at most 1.4(k-1) vertices and k is sufficiently large. 
    more » « less
  2. Dirac proved that each $$n$$-vertex $$2$$-connected graph with minimum degree $$k$$ contains a cycle of length at least $$\min\{2k, n\}$$. We obtain analogous results for Berge cycles in hypergraphs. Recently, the authors proved an exact lower bound on the minimum degree ensuring a Berge cycle of length at least $$\min\{2k, n\}$$ in $$n$$-vertex $$r$$-uniform $$2$$-connected hypergraphs when $$k \geq r+2$$. In this paper we address the case $$k \leq r+1$$ in which the bounds have a different behavior. We prove that each $$n$$-vertex $$r$$-uniform $$2$$-connected hypergraph $$H$$ with minimum degree $$k$$ contains a Berge cycle of length at least $$\min\{2k,n,|E(H)|\}$$. If $$|E(H)|\geq n$$, this bound coincides with the bound of the Dirac's Theorem for 2-connected graphs. 
    more » « less
  3. Abstract We present progress on three old conjectures about longest paths and cycles in graphs. The first pair of conjectures, due to Lovász from 1969 and Thomassen from 1978, respectively, states that all connected vertex‐transitive graphs contain a Hamiltonian path, and that all sufficiently large such graphs even contain a Hamiltonian cycle. The third conjecture, due to Smith from 1984, states that for in every ‐connected graph any two longest cycles intersect in at least vertices. In this paper, we prove a new lemma about the intersection of longest cycles in a graph, which can be used to improve the best known bounds toward all the aforementioned conjectures: First, we show that every connected vertex‐transitive graph on vertices contains a cycle (and hence path) of length at least , improving on from DeVos [arXiv:2302:04255, 2023]. Second, we show that in every ‐connected graph with , any two longest cycles meet in at least vertices, improving on from Chen, Faudree, and Gould [J. Combin. Theory, Ser. B,72(1998) no. 1, 143–149]. Our proof combines combinatorial arguments, computer search, and linear programming. 
    more » « less
  4. Albert, Michael; Billington, Elizabeth J (Ed.)
    In the first partial result toward Steinberg’s now-disproved three coloring conjecture, Abbott and Zhou used a counting argument to show that every planar graph without cycles of lengths 4 through 11 is 3-colorable. Implicit in their proof is a fact about plane graphs: in any plane graph of minimum degree 3, if no two triangles share an edge, then triangles make up strictly fewer than 2/3 of the faces. We show how this result, combined with Kostochka and Yancey’s resolution of Ore’s conjecture for k = 4, implies that every planar graph without cycles of lengths 4 through 8 is 3-colorable. 
    more » « less
  5. null (Ed.)
    Abstract We investigate a covering problem in 3-uniform hypergraphs (3-graphs): Given a 3-graph F , what is c 1 ( n , F ), the least integer d such that if G is an n -vertex 3-graph with minimum vertex-degree $$\delta_1(G)>d$$ then every vertex of G is contained in a copy of F in G ? We asymptotically determine c 1 ( n , F ) when F is the generalized triangle $$K_4^{(3)-}$$ , and we give close to optimal bounds in the case where F is the tetrahedron $$K_4^{(3)}$$ (the complete 3-graph on 4 vertices). This latter problem turns out to be a special instance of the following problem for graphs: Given an n -vertex graph G with $m> n^2/4$ edges, what is the largest t such that some vertex in G must be contained in t triangles? We give upper bound constructions for this problem that we conjecture are asymptotically tight. We prove our conjecture for tripartite graphs, and use flag algebra computations to give some evidence of its truth in the general case. 
    more » « less