skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long-Read Genome Assemblies Reveal Extraordinary Variation in the Number and Structure of MHC Loci in Birds
Abstract Our knowledge of the Major Histocompatibility Complex (MHC) in birds is limited because it often consists of numerous duplicated genes within individuals that are difficult to assemble with short read sequencing technology. Long-read sequencing provides an opportunity to overcome this limitation because it allows the assembly of long regions with repetitive elements. In this study, we used genomes based on long-read sequencing to predict the number and location of MHC loci in a broad range of bird taxa. From the long-read-based genomes of 34 species, we found that there was extremely large variation in the number of MHC loci between species. Overall, there were greater numbers of both class I and II loci in passerines than nonpasserines. The highest numbers of loci (up to 193 class II loci) were found in manakins (Pipridae), which had previously not been studied at the MHC. Our results provide the first direct evidence from passerine genomes of this high level of duplication. We also found different duplication patterns between species. In some species, both MHC class I and II genes were duplicated together, whereas in most species they were duplicated independently. Our study shows that the analysis of long-read-based genomes can dramatically improve our knowledge of MHC structure, although further improvements in chromosome level assembly are needed to understand the evolutionary mechanisms producing the extraordinary interspecific variation in the architecture of the MHC region.  more » « less
Award ID(s):
1749044
PAR ID:
10219205
Author(s) / Creator(s):
; ;
Editor(s):
Eyre-Walker, Adam
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
13
Issue:
2
ISSN:
1759-6653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Suh, Alexander (Ed.)
    Abstract Although spiders are one of the most diverse groups of arthropods, the genetic architecture of their evolutionary adaptations is largely unknown. Specifically, ancient genome-wide duplication occurring during arachnid evolution ~450 mya resulted in a vast assembly of gene families, yet the extent to which selection has shaped this variation is understudied. To aid in comparative genome sequence analyses, we provide a chromosome-level genome of the Western black widow spider (Latrodectus hesperus)—a focus due to its silk properties, venom applications, and as a model for urban adaptation. We used long-read and Hi-C sequencing data, combined with transcriptomes, to assemble 14 chromosomes in a 1.46 Gb genome, with 38,393 genes annotated, and a BUSCO score of 95.3%. Our analyses identified high repetitive gene content and heterozygosity, consistent with other spider genomes, which has led to challenges in genome characterization. Our comparative evolutionary analyses of eight genomes available for species within the Araneoidea group (orb weavers and their descendants) identified 1,827 single-copy orthologs. Of these, 155 exhibit significant positive selection primarily associated with developmental genes, and with traits linked to sensory perception. These results support the hypothesis that several traits unique to spiders emerged from the adaptive evolution of ohnologs—or retained ancestrally duplicated genes—from ancient genome-wide duplication. These comparative spider genome analyses can serve as a model to understand how positive selection continually shapes ancestral duplications in generating novel traits today within and between diverse taxonomic groups. 
    more » « less
  2. Abstract The adoption of agriculture triggered a rapid shift towards starch-rich diets in human populations1. Amylase genes facilitate starch digestion, and increased amylase copy number has been observed in some modern human populations with high-starch intake2, although evidence of recent selection is lacking3,4. Here, using 94 long-read haplotype-resolved assemblies and short-read data from approximately 5,600 contemporary and ancient humans, we resolve the diversity and evolutionary history of structural variation at the amylase locus. We find that amylase genes have higher copy numbers in agricultural populations than in fishing, hunting and pastoral populations. We identify 28 distinct amylase structural architectures and demonstrate that nearly identical structures have arisen recurrently on different haplotype backgrounds throughout recent human history.AMY1andAMY2Agenes each underwent multiple duplication/deletion events with mutation rates up to more than 10,000-fold the single-nucleotide polymorphism mutation rate, whereasAMY2Bgene duplications share a single origin. Using a pangenome-based approach, we infer structural haplotypes across thousands of humans identifying extensively duplicated haplotypes at higher frequency in modern agricultural populations. Leveraging 533 ancient human genomes, we find that duplication-containing haplotypes (with more gene copies than the ancestral haplotype) have rapidly increased in frequency over the past 12,000 years in West Eurasians, suggestive of positive selection. Together, our study highlights the potential effects of the agricultural revolution on human genomes and the importance of structural variation in human adaptation. 
    more » « less
  3. Sex-determining regions have been identified in the Nile tilapia on linkage groups (LG) 1, 20 and 23, depending on the domesticated strains used. Sex determining studies on wild populations of this species are scarce. Previous work on two wild populations, from Lake Volta (Ghana) and from Lake Koka (Ethiopia), found the sex-determining region on LG23. These populations have a Y-specific tandem duplication containing two copies of the Anti-Müllerian Hormone amh gene (named amhY and amhΔY ). Here, we performed a whole-genome short-reads analysis using male and female pools on a third wild population from Lake Hora (Ethiopia). We found no association of sex with LG23, and no duplication of the amh gene. Furthermore, we found no evidence of sex linkage on LG1 or on any other LGs. Long read whole genome sequencing of a male from each population confirmed the absence of a duplicated region on LG23 in the Lake Hora male. In contrast, long reads established the structure of the Y haplotype in Koka and Kpandu males and the order of the genes in the duplicated region. Phylogenies constructed on the nuclear and mitochondrial genomes, showed a closer relationship between the two Ethiopian populations compared to the Ghanaian population, implying an absence of the LG23Y sex-determination region in Lake Hora males. Our study supports the hypothesis that the amh region is not the sex-determining region in Hora males. The absence of the Y amh duplication in the Lake Hora population reflects a rapid change in sex determination within Nile tilapia populations. The genetic basis of sex determination in the Lake Hora population remains unknown. 
    more » « less
  4. Abstract The assembly of genomes from pooled samples of genetically heterogenous samples of conspecifics remains challenging. In this study, we show that high‐quality genome assemblies can be produced from samples of multiple wild‐caught individuals. We sequenced DNA extracted from a pooled sample of conspecific herbivorous insects (Hemiptera: Miridae:Tupiocoris notatus) acquired from a greenhouse infestation in Tucson, Arizona (in the range of 30–100 individuals; 0.5 mL tissue by volume) using PacBio highly accurate long reads (HiFi). The initial assembly contained multiple haplotigs (>85% BUSCOs duplicated), but duplicate contigs could be easily purged to reveal a highly complete assembly (95.6% BUSCO, 4.4% duplicated) that is highly contiguous by short‐read assembly standards (N50 = 675 kb; Largest contig = 4.3 Mb). We then used our assembly as the basis for a genome‐guided differential expression study of host plant‐specific transcriptional responses. We found thousands of genes (N = 4982) to be differentially expressed between our new data from individuals feeding onDatura wrightii(Solanaceae) and existing RNA‐seq data fromNicotiana attenuata(Solanaceae)‐fed individuals. We identified many of these genes as previously documented detoxification genes such as glutathione‐S‐transferases, cytochrome P450s, and UDP‐glucosyltransferases. Together our results show that long‐read sequencing of pooled samples can provide a cost‐effective genome assembly option for small insects and can provide insights into the genetic mechanisms underlying interactions between plants and herbivorous pests. 
    more » « less
  5. Abstract Genetic diversity is essential for populations to adapt to changing environments. Measures of genetic diversity are often based on selectively neutral markers, such as microsatellites. Genetic diversity to guide conservation management, however, is better reflected by adaptive markers, including genes of the major histocompatibility complex (MHC). Our aim was to assess MHC and neutral genetic diversity in two contrasting bottlenose dolphin (Tursiops aduncus) populations in Western Australia—one apparently viable population with high reproductive output (Shark Bay) and one with lower reproductive output that was forecast to decline (Bunbury). We assessed genetic variation in the two populations by sequencing the MHC class II DQB, which encompasses the functionally important peptide binding regions (PBR). Neutral genetic diversity was assessed by genotyping twenty‐three microsatellite loci. We confirmed that MHC is an adaptive marker in both populations. Overall, the Shark Bay population exhibited greater MHC diversity than the Bunbury population—for example, it displayed greater MHC nucleotide diversity. In contrast, the difference in microsatellite diversity between the two populations was comparatively low. Our findings are consistent with the hypothesis that viable populations typically display greater genetic diversity than less viable populations. The results also suggest that MHC variation is more closely associated with population viability than neutral genetic variation. Although the inferences from our findings are limited, because we only compared two populations, our results add to a growing number of studies that highlight the usefulness of MHC as a potentially suitable genetic marker for animal conservation. The Shark Bay population, which carries greater adaptive genetic diversity than the Bunbury population, is thus likely more robust to natural or human‐induced changes to the coastal ecosystem it inhabits. 
    more » « less