skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polymorphism of Sex Determination Amongst Wild Populations Suggests its Rapid Turnover Within the Nile Tilapia Species
Sex-determining regions have been identified in the Nile tilapia on linkage groups (LG) 1, 20 and 23, depending on the domesticated strains used. Sex determining studies on wild populations of this species are scarce. Previous work on two wild populations, from Lake Volta (Ghana) and from Lake Koka (Ethiopia), found the sex-determining region on LG23. These populations have a Y-specific tandem duplication containing two copies of the Anti-Müllerian Hormone amh gene (named amhY and amhΔY ). Here, we performed a whole-genome short-reads analysis using male and female pools on a third wild population from Lake Hora (Ethiopia). We found no association of sex with LG23, and no duplication of the amh gene. Furthermore, we found no evidence of sex linkage on LG1 or on any other LGs. Long read whole genome sequencing of a male from each population confirmed the absence of a duplicated region on LG23 in the Lake Hora male. In contrast, long reads established the structure of the Y haplotype in Koka and Kpandu males and the order of the genes in the duplicated region. Phylogenies constructed on the nuclear and mitochondrial genomes, showed a closer relationship between the two Ethiopian populations compared to the Ghanaian population, implying an absence of the LG23Y sex-determination region in Lake Hora males. Our study supports the hypothesis that the amh region is not the sex-determining region in Hora males. The absence of the Y amh duplication in the Lake Hora population reflects a rapid change in sex determination within Nile tilapia populations. The genetic basis of sex determination in the Lake Hora population remains unknown.  more » « less
Award ID(s):
1830753
PAR ID:
10382947
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Genetics
Volume:
13
ISSN:
1664-8021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In domesticated strains of the Nile tilapia, phenotypic sex has been linked to genetic variants on linkage groups 1, 20 and 23. This diversity of sex-loci might reflect a naturally polymorphic sex determination system in Nile tilapia, or it might be an artefact arising from the process of domestication. Here, we searched for sex-determiners in wild populations from Kpandu, Lake Volta (Ghana-West Africa), and from Lake Koka (Ethiopia-East Africa) that have not been subjected to any genetic manipulation. We analysed lab-reared families using double-digest Restriction Associated DNA sequencing (ddRAD) and analysed wild-caught males and females with pooled whole-genome sequencing (WGS). Strong sex-linked signals were found on LG23 in both populations, and sex-linked signals with LG3 were observed in Kpandu samples. WGS uncovered blocks of high sequence coverage, suggesting the presence of B chromosomes. We confirmed the existence of a tandem amh duplication in LG23 in both populations and determined its breakpoints between the oaz1 and dot1l genes. We found two common deletions of ~5 kb in males and confirmed the presence of both amhY and amh∆Y genes. Males from Lake Koka lack both the previously reported 234 bp deletion and the 5 bp frameshift-insertion that creates a premature stop codon in amh∆Y. 
    more » « less
  2. The Mozambique tilapia ( Oreochromis mossambicus ) is a fascinating taxon for evolutionary and ecological research. It is an important food fish and one of the most widely distributed tilapias. Because males grow faster than females, genetically male tilapia are preferred in aquaculture. However, studies of sex determination and sex control in O . mossambicus have been hindered by the limited characterization of the genome. To address this gap, we assembled a high-quality genome of O . mossambicus , using a combination of high coverage of Illumina and Nanopore reads, coupled with Hi-C and RNA-Seq data. Our genome assembly spans 1,007 Mb with a scaffold N50 of 11.38 Mb. We successfully anchored and oriented 98.6% of the genome on 22 linkage groups (LGs). Based on re-sequencing data for male and female fishes from three families, O . mossambicus segregates both an XY system on LG14 and a ZW system on LG3. The sex-patterned SNPs shared by two XY families narrowed the sex determining regions to ∼3 Mb on LG14. The shared sex-patterned SNPs included two deleterious missense mutations in ahnak and rhbdd1 , indicating the possible roles of these two genes in sex determination. This annotated chromosome-level genome assembly and identification of sex determining regions represents a valuable resource to help understand the evolution of genetic sex determination in tilapias. 
    more » « less
  3. Teleosts are important models to study sex chromosomes and sex-determining (SD) genes because they present a variety of sex determination systems. Here, we used Nanopore and Hi-C technologies to generate a high-contiguity chromosome-level genome assembly of a YY southern catfish ( Silurus meridionalis ). The assembly is 750.0 Mb long, with contig N50 of 15.96 Mb and scaffold N50 of 27.22 Mb. We also sequenced and assembled an XY male genome with a size of 727.2 Mb and contig N50 of 13.69 Mb. We identified a candidate SD gene through comparisons to our previous assembly of an XX individual. By resequencing male and female pools, we characterized a 2.38 Mb sex-determining region (SDR) on Chr24. Analysis of read coverage and comparison of the X and Y chromosome sequences showed a Y specific insertion (approx. 500 kb) in the SDR which contained a male-specific duplicate of amhr2 (named amhr2y ). amhr2y and amhr2 shared high-nucleotide identity (81.0%) in the coding region but extremely low identity in the promotor and intron regions. The exclusive expression in the male gonadal primordium and loss-of-function inducing male to female sex reversal confirmed the role of amhr2y in male sex determination. Our study provides a new example of amhr2 as the SD gene in fish and sheds light on the convergent evolution of the duplication of AMH/AMHR2 pathway members underlying the evolution of sex determination in different fish lineages. 
    more » « less
  4. Abstract Sex determination, the developmental process by which sexually dimorphic phenotypes are established, evolves fast. Evolutionary turnover in a sex determination pathway may occur via selection on alleles that are genetically linked to a new master sex determining locus on a newly formed proto‐sex chromosome. Species with polygenic sex determination, in which master regulatory genes are found on multiple different proto‐sex chromosomes, are informative models to study the evolution of sex determination and sex chromosomes. House flies are such a model system, with male determining loci possible on all six chromosomes and a female‐determiner on one of the chromosomes as well. The two most common male‐determining proto‐Y chromosomes form latitudinal clines on multiple continents, suggesting that temperature variation is an important selection pressure responsible for maintaining polygenic sex determination in this species. Temperature‐dependent fitness effects could be manifested through temperature‐dependent gene expression differences across proto‐Y chromosome genotypes. These gene expression differences may be the result ofcisregulatory variants that affect the expression of genes on the proto‐sex chromosomes, ortranseffects of the proto‐Y chromosomes on genes elswhere in the genome. We used RNA‐seq to identify genes whose expression depends on proto‐Y chromosome genotype and temperature in adult male house flies. We found no evidence for ecologically meaningful temperature‐dependent expression differences of sex determining genes between male genotypes, but we were probably not sampling an appropriate developmental time‐point to identify such effects. In contrast, we identified many other genes whose expression depends on the interaction between proto‐Y chromosome genotype and temperature, including genes that encode proteins involved in reproduction, metabolism, lifespan, stress response, and immunity. Notably, genes with genotype‐by‐temperature interactions on expression were not enriched on the proto‐sex chromosomes. Moreover, there was no evidence that temperature‐dependent expression is driven by chromosome‐widecis‐regulatory divergence between the proto‐Y and proto‐X alleles. Therefore, if temperature‐dependent gene expression is responsible for differences in phenotypes and fitness of proto‐Y genotypes across house fly populations, these effects are driven by a small number of temperature‐dependent alleles on the proto‐Y chromosomes that may havetranseffects on the expression of genes on other chromosomes. 
    more » « less
  5. Lott, S (Ed.)
    Abstract In species with polygenic sex determination (PSD), multiple male- and female-determining loci on different proto-sex chromosomes segregate as polymorphisms within populations. The extent to which these polymorphisms are at stable equilibria is not yet resolved. Previous work demonstrated that PSD is most likely to be maintained as a stable polymorphism when the proto-sex chromosomes have opposite (sexually antagonistic) fitness effects in males and females. However, these models usually consider PSD systems with only two proto-sex chromosomes, or they do not broadly consider the dominance of the alleles under selection. To address these shortcomings, I used forward population genetic simulations to identify selection pressures that can maintain PSD under different dominance scenarios in a system with more than two proto-sex chromosomes (modeled after the house fly). I found that overdominant fitness effects of male-determining proto-Y chromosomes are more likely to maintain PSD than dominant, recessive, or additive fitness effects. The overdominant fitness effects that maintain PSD tend to have proto-Y chromosomes with sexually antagonistic effects (male-beneficial and female-detrimental). In contrast, dominant fitness effects that maintain PSD tend to have sexually antagonistic multi-chromosomal genotypes, but the individual proto-sex chromosomes do not have sexually antagonistic effects. These results demonstrate that sexual antagonism can be an emergent property of the multi-chromosome genotype without individual sexually antagonistic chromosomes. My results further illustrate how the dominance of fitness effects has consequences for both the likelihood that PSD will be maintained as well as the role sexually antagonistic selection is expected to play in maintaining the polymorphism. 
    more » « less