Abstract The contributions of oceanic and atmospheric variability to spatially widespread summer droughts in the contiguous United States (hereafter, pan‐CONUS droughts) are investigated using 16‐member ensembles of the Community Climate Model version 3 (CCM3) forced with observed sea surface temperatures (SSTs) from 1856–2012. The employed SST forcing fields are either (i) global or restricted to the (ii) tropical Pacific or (iii) tropical Atlantic to isolate the impacts of these two ocean regions on pan‐CONUS droughts. Model results show that SST forcing of pan‐CONUS droughts originates almost entirely from the tropical Pacific because of atmospheric highs from the northern Pacific to eastern North America established by La Niña conditions, with little contribution from the tropical Atlantic. Notably, in all three model configurations, internal atmospheric variability influences pan‐CONUS drought occurrence by as much or more than the ocean forcing and can alone cause pan‐CONUS droughts by establishing a dominant high centered over the U.S. montane west. Similar results are found for the Community Atmosphere Model version 5 (CAM5). Model results are compared to the observational record, which supports model‐inferred contributions to pan‐CONUS droughts from La Niñas and internal atmospheric variability. While there may be an additional association with warm Atlantic SSTs in the observational record, this association is ambiguous due to the limited number of observed pan‐CONUS droughts. The ambiguity thus opens the possibility that the observational results are limited by sampling over the twentieth century and not at odds with the suggested dominance of Pacific Ocean forcing in the model ensembles.
more »
« less
U.S. Pacific Coastal Droughts Are Predominantly Driven by Internal Atmospheric Variability
Abstract Droughts that span the states of Washington, Oregon, and California are rare but devastating due to their large spatial coverage and potential loss of redundancies in water, agricultural, and fire-fighting resources. Such pan-coastal droughts [which we define using boreal summer volumetric soil moisture along the U.S. Pacific coast (32°–50°N, 115°–127°W)] require a more precise understanding of the roles played by the Pacific Ocean and internal atmospheric variability. We employ 16-member ensembles of the Community Atmosphere Model version 5 and Community Climate Model version 3 forced with observed sea surface temperatures (SSTs) from 1856 to 2012 to separate and quantify the influences of the tropical Pacific and internal atmospheric variability on pan-coastal droughts; all other boundary conditions are kept at climatological levels to explicitly isolate for the impacts of SST changes. Internal atmospheric variability is the dominant driver of pan-coastal droughts, accounting for 84% of their severity, and can reliably generate pan-coastal droughts even when ocean conditions do not favor drought. Cold phases of the Pacific Ocean play a secondary role and contribute, on average, only 16% to pan-coastal drought severity. Spatiotemporal analyses of precipitation and soil moisture along the U.S. Pacific coast corroborate these findings and identify an antiphased wet–dry dipole pattern induced by the Pacific to play a more secondary role. Our model framework expands on previous observational analyses that point to the spatially uniform forcing of internal atmospheric variability as the more dominant mode of hydroclimate variability along the U.S. Pacific coast. The secondary nature of oceanic forcing suggests limited predictability of pan-continental droughts.
more »
« less
- PAR ID:
- 10219219
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 34
- Issue:
- 5
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 1947 to 1962
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In summer 2021, 90% of the western United States (WUS) experienced drought, with over half of the region facing extreme or exceptional conditions, leading to water scarcity, crop loss, ecological degradation, and significant socio‐economic consequences. Beyond the established influence of oceanic forcing and internal atmospheric variability, this study highlights the importance of land‐surface conditions in the development of the 2020–2021 WUS drought, using observational data analysis and novel numerical simulations. Our results demonstrate that the soil moisture state preceding a meteorological drought, due to its intrinsic memory, is a critical factor in the development of soil droughts. Specifically, wet soil conditions can delay the transition from meteorological to soil droughts by several months or even nullify the effects of La Niña‐driven meteorological droughts, while drier conditions can exacerbate these impacts, leading to more severe soil droughts. For the same reason, soil droughts can persist well beyond the end of meteorological droughts. Our numerical experiments suggest a relatively weak soil moisture‐precipitation coupling during this drought period, corroborating the primary contributions of the ocean and atmosphere to this meteorological drought. Additionally, drought‐induced vegetation losses can mitigate soil droughts by reducing evapotranspiration and slowing the depletion of soil moisture. This study highlights the importance of soil moisture and vegetation conditions in seasonal‐to‐interannual drought predictions. Findings from this study have implications for regions like the WUS, which are experiencing anthropogenically‐driven soil aridification and vegetation greening, suggesting that future soil droughts in these areas may develop more rapidly, become more severe, and persist longer.more » « less
-
Abstract The Central American Dry Corridor experienced five consecutive years of drought from 2015 to 2019. Here, we find that the severity of this drought was driven primarily by rainfall deficits in July–August. To determine if the magnitude of this event was outside the range of natural variability, we apply a statistical resampling method to observations that emulates internal climate variability. Our analyses show that droughts similar to the 2015–2019 event are possible, although extremely rare, even without anthropogenic influences. Persistent droughts in our ensemble are consistently linked to stronger easterly winds associated with the Caribbean Low‐Level Jet. We also examine the effects of temperature on soil moisture during this drought using the Palmer Drought Severity Index and show that anthropogenic warming increases the likelihood of severe deficits. Multi‐year droughts are likely to worsen by the end of the 21st century due to the compound effects of anthropogenic climate change.more » « less
-
Abstract We examine oceanic drivers of widespread droughts over the contiguous United States (herein pan‐CONUS droughts) during the Common Era in what is one of the first analyses of the new Paleo Hydrodynamics Data Assimilation (PHYDA) product. The canonical understanding of oceanic influences on North American hydroclimate suggests that pan‐CONUS droughts are forced by a contemporaneous cold tropical Pacific Ocean and a warm tropical Atlantic Ocean. We test this hypothesis using the paleoclimate record. Composite analyses find a robust association between pan‐CONUS drought events and cold tropical Pacific conditions, but not with warm Atlantic conditions. Similarly, a self‐organizing map analysis shows that pan‐CONUS drought years are most commonly associated with a global sea surface temperature pattern displaying strong La Niña and cold Atlantic Multidecadal Oscillation (AMO) conditions. Our results confirm previous model‐based findings for the instrumental period and show that cold tropical Pacific Ocean conditions are the principal driver of pan‐CONUS droughts on annual timescales.more » « less
-
Abstract Rainfall over mainland Southeast Asia experiences variability on seasonal to decadal timescales in response to a multitude of climate phenomena. Historical records and paleoclimate archives that span the last millennium reveal extreme multi-year rainfall variations that significantly affected the societies of mainland Southeast Asia. Here we utilize the Community Earth System Model Last Millennium Ensemble (CESM-LME) to quantify the contributions of internal and external drivers to decadal-scale rainfall extremes in the Southeast Asia region. We find that internal variability was dominant in driving both Southeast Asian drought and pluvial extremes on decadal timescales although external forcing impacts are also detectable. Specifically, rainfall extremes are more sensitive to Pacific Ocean internal variability than the state of the Indian Ocean. This discrepancy is greater for droughts than pluvials which we suggest is attributable to external forcing impacts that counteract the forced Indian Ocean teleconnections to Southeast Asia. Volcanic aerosols, the most effective radiative forcing during the last millennium, contributed to both the Ming Dynasty Drought (1637–1643) and the Strange Parallels Drought (1756–1768). From the Medieval Climate Anomaly to the Little Ice Age, we observe a shift in Indo-Pacific teleconnection strength to Southeast Asia consistent with enhanced volcanism during the latter interval. This work not only highlights asymmetries in the drivers of rainfall extremes but also presents a framework for quantifying multivariate drivers of decadal-scale variability and hydroclimatic extremes.more » « less
An official website of the United States government

