The tropical response to explosive volcanism remains underconstrained in the paleoclimate record. While the atmosphere cools due to aerosol forcing following volcanic eruptions, modeling evidence suggests that the tropical Pacific responds with compensatory warming. Given the rarity of large volcanic eruptions and the short instrumental record, these modeling results require independent verification. Here, we test for links between volcanism and tropical Pacific dynamics using the newly developed Paleo Hydrodynamics Data Assimilation product (PHYDA), which spans the past 2,000 years. Using Pacific sea surface temperature fields from PHYDA and coincident volcanic eruptions, we test the response of the El Niño–Southern Oscillation (ENSO) to large, tropical volcanic eruptions. We identify a weak El Niño‐like response of the tropical Pacific in the year following sufficiently large, tropical volcanic eruptions. While the response is not significant at the 95% confidence level using superposed epoch analysis (SEA) and self‐organizing maps, a significant result does emerge when employing probability density functions. Our results indicate that the widely used SEA approach, based on composite averaging, may not be sufficiently sensitive to capture an ENSO response in the presence of large internal variability. We additionally conclude that inconsistencies in both the spatial patterns and magnitudes between climate modelsmore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract The history of the Polynesian civilization on Rapa Nui (Easter Island) over the Common Era has come to exemplify the fragile relationship humans have with their environment. Social dynamics, deforestation, land degradation, and climatic shifts have all been proposed as important parts of the settlement history and societal transformations on Rapa Nui. Furthermore, climate dynamics of the Southeast Pacific have major global implications. While the wetlands of Rapa Nui contain critical sedimentological archives for reconstructing past hydrological change on the island, connections between the island’s hydroclimate and fundamental aspects of regional climatology are poorly understood. Here we present a hydroclimatology of Rapa Nui showing that there is a clear seasonal cycle of precipitation, with wet months receiving almost twice as much precipitation as dry months. This seasonal cycle can be explained by the seasonal shifts in the location and strength of the climatological south Pacific subtropical anticyclone. For interannual precipitation variability, we find that the occurrence of infrequent, large rain events explains 92% of the variance of the observed annual mean precipitation time series. Approximately one third (33%) of these events are associated with atmospheric rivers, 21% are associated with classic cold-front synoptic systems, and the remainder are characterizedmore »
-
Abstract We examine oceanic drivers of widespread droughts over the contiguous United States (herein pan‐CONUS droughts) during the Common Era in what is one of the first analyses of the new Paleo Hydrodynamics Data Assimilation (PHYDA) product. The canonical understanding of oceanic influences on North American hydroclimate suggests that pan‐CONUS droughts are forced by a contemporaneous cold tropical Pacific Ocean and a warm tropical Atlantic Ocean. We test this hypothesis using the paleoclimate record. Composite analyses find a robust association between pan‐CONUS drought events and cold tropical Pacific conditions, but not with warm Atlantic conditions. Similarly, a self‐organizing map analysis shows that pan‐CONUS drought years are most commonly associated with a global sea surface temperature pattern displaying strong La Niña and cold Atlantic Multidecadal Oscillation (AMO) conditions. Our results confirm previous model‐based findings for the instrumental period and show that cold tropical Pacific Ocean conditions are the principal driver of pan‐CONUS droughts on annual timescales.
-
Free, publicly-accessible full text available January 28, 2024
-
Free, publicly-accessible full text available November 1, 2023
-
Streamflow often increases after fire, but the persistence of this effect and its importance to present and future regional water resources are unclear. This paper addresses these knowledge gaps for the western United States (WUS), where annual forest fire area increased by more than 1,100% during 1984 to 2020. Among 72 forested basins across the WUS that burned between 1984 and 2019, the multibasin mean streamflow was significantly elevated by 0.19 SDs ( P < 0.01) for an average of 6 water years postfire, compared to the range of results expected from climate alone. Significance is assessed by comparing prefire and postfire streamflow responses to climate and also to streamflow among 107 control basins that experienced little to no wildfire during the study period. The streamflow response scales with fire extent: among the 29 basins where >20% of forest area burned in a year, streamflow over the first 6 water years postfire increased by a multibasin average of 0.38 SDs, or 30%. Postfire streamflow increases were significant in all four seasons. Historical fire–climate relationships combined with climate model projections suggest that 2021 to 2050 will see repeated years when climate is more fire-conducive than in 2020, the year currently holdingmore »
-
Abstract. The South American Summer Monsoon (SASM) is the maindriver of regional hydroclimate variability across tropical and subtropicalSouth America. It is best recorded on paleoclimatic timescales by stableoxygen isotope proxies, which are more spatially representative of regionalhydroclimate than proxies for local precipitation alone. Network studies ofproxies that can isolate regional influences lend particular insight intovarious environmental characteristics that modulate hydroclimate, such asatmospheric circulation variability and changes in the regional energybudget as well as understanding the climate system sensitivity to externalforcings. We extract the coherent modes of variability of the SASM over thelast millennium (LM) using a Monte Carlo empirical orthogonal function(MCEOF) decomposition of 14 δ18O proxy records and compare themwith modes decomposed from isotope-enabled climate model data. The twoleading modes reflect the isotopic variability associated with (1) thermodynamic changes driving the upper-tropospheric monsoon circulation(Bolivian High–Nordeste Low waveguide) and (2) the latitudinaldisplacement of the South Atlantic Convergence Zone (SACZ). The spatialcharacteristics of these modes appear to be robust features of the LMhydroclimate over South America and are reproduced both in the proxy dataand in isotope-enabled climate models, regardless of the nature of themodel-imposed external forcing. The proxy data document that the SASM wascharacterized by considerable temporal variability throughout the LM, withsignificant departures from themore »