skip to main content


Title: A New Extensible Continuum Manipulator Using Flexible Parallel Mechanism and Rigid Motion Transmission
Abstract

An extensible continuum manipulator (ECM) has specific advantages over its non-extensible counterparts. For instance, in certain applications, such as minimally invasive surgery or tube inspection, the base motion might be limited or disallowed. The additional extensibility provides the robot with more dexterous manipulation and larger workspace. Existing continuum robot designs achieve extensibility mainly through artificial muscle/pneumatic, extensible backbone, concentric tube, and base extension etc. This paper proposes a new way to achieve this additional motion degree of freedom by taking advantage of the rigid coupling hybrid mechanism concept and a flexible parallel mechanism. More specifically, a rack and pinion set is used to transmit the motion of the i-th subsegment to drive the (i+1)-th subsegment. A six-chain flexible parallel mechanism is used to generate the desired spatial bending and one extension mobility for each subsegment. This way, the new manipulator is able to achieve tail-like spatial bending and worm-like extension at the same time. A proof-of-concept prototype was integrated to verify the mobility of the new mechanism. Corresponding kinematic analyses are conducted to estimate the workspace and the motion non-uniformity.

 
more » « less
Award ID(s):
1906727
NSF-PAR ID:
10219243
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 10: 44th Mechanisms and Robotics Conference (MR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract An extensible continuum manipulator (ECM) has specific advantages over its nonextensible counterparts. For instance, in certain applications, such as minimally invasive surgery or pipe inspection, the base motion might be limited or disallowed. The additional extensibility provides the robot with more dexterous manipulation and a larger workspace. Existing continuum robot designs achieve extensibility mainly through artificial muscle/pneumatic, extensible backbone, concentric tube, and base extension, etc. This article proposes a new way to achieve this additional motion degree-of-freedom by taking advantage of the rigid coupling hybrid mechanism concept and a flexible parallel mechanism. More specifically, a rack and pinion set is used to transmit the motion of the i-th subsegment to drive the (i+1)-th subsegment. A six-chain flexible parallel mechanism is used to generate the desired spatial bending and one extension mobility for each subsegment. This way, the new manipulator can achieve tail-like spatial bending and worm-like extension at the same time. Simplified kinematic analyses are conducted to estimate the workspace and the motion nonuniformity. A proof-of-concept prototype was integrated to verify the mechanism’s mobility and to evaluate the kinematic model accuracy. The results show that the proposed mechanism achieved the desired mobilities with a maximum extension ratio of 32.2% and a maximum bending angle of 80 deg. 
    more » « less
  2. Abstract Based on observations from nature, tails are believed to help animals achieve highly agile motions. Traditional single-link robotic tails serve as a good simplification for both modeling and implementation purposes. However, this approach cannot explain the complicated tail behaviors exhibited in nature where multi-link structures are more commonly observed. Unlike its single-link counterpart, articulated multi-link tails essentially belong to the serial manipulator family which possesses special motion transmission design challenges. To address this challenge, a cable-driven hyper-redundant design becomes the most used approach. Limited by cable strength and elastic components, this approach suffers from low-frequency response, inadequate generated inertial loading, and fragile hardware, which are all critical drawbacks for robotic tails design. To solve these structure-related shortcomings, a multi-link robotic tail made up of rigid links is proposed in this paper. The new structure takes advantage of the traditional hybrid mechanism architecture, but utilizes rigid mechanisms to couple the motions between the ith link and the (i + 1)th link rather than using cable actuation. By doing so, the overall tail becomes a rigid mechanism that achieves quasi-uniform spatial bending for each segment and allows performing highly dynamic motions. The mechanism and detailed design of this new robotic tail are presented. The kinematic model was developed and an optimization process was conducted to reduce the bending non-uniformity for the rigid tail. Based on this special optimization design, the dynamic model of the new mechanism is significantly simplified. A small-scale three-segment prototype was integrated to verify the proposed mechanism's unique mobility. 
    more » « less
  3. null (Ed.)
    Continuum robots have high degrees of freedom and the ability to safely move in constrained environments. One class of soft continuum robot is the “vine” robot. This type of robot extends from its tip by everting or unfurling new material, driven by internal body pressure. Most vine robot examples store new body material in a reel at their base, passing it through the core of the robot to the tip, and like many continuum robots, steer by selectively lengthening or shortening one side of the body. While this approach to steering and material storage lends itself to a fully soft device, it has three key limitations: (i) internal friction of material passing through the core of the robot limits its length in tortuous paths, (ii) body buckling as the robot's body material is re-spooled at the base can prevent retraction, and (iii) constant curvature steering limits the robot's poses and object approach angles in a given workspace. This letter presents a hybrid soft-rigid robotic system comprising a soft vine robot body and a rigid, mobile, internal steering-reeling mechanism (SRM); this SRM is equipped with a reel for material storage, a bending actuator for steering, and is capable of actuating the robot at any point along its length. This hybrid configuration increases reach along tortuous paths, allows retraction, and increases the workspace. We describe the motivation for the device, generate its mathematical models, present its methods of operation, and verify experimentally the models we developed and the performance improvements over previous vine robots. 
    more » « less
  4. Abstract Mobile robots with manipulation capability are a key technology that enables flexible robotic interactions, large area covering and remote exploration. This paper presents a novel class of actuation-coordinated mobile parallel robots (ACMPRs) that utilize parallel mechanism configurations and perform hybrid moving and manipulation functions through coordinated wheel actuators. The ACMPRs differ with existing mobile manipulators by their unique combination of the mobile wheel actuators and the parallel mechanism topology through prismatic joint connections. Common motion of the wheels will provide mobile function while their relative motion will actuate the parallel manipulation function. This new concept reduces actuation requirement and increases manipulation accuracy and mobile motion stability through coordinated and connected wheel actuators comparing with existing mobile parallel manipulators. The relative wheel location on the base frame also enables a reconfigurable base size with variable moving stability on the ground. The basic concept and general type synthesis are introduced and followed by kinematics and inverse dynamics analysis of a selected three limb ACMPR. A numerical simulation also illustrates the dynamics model and the motion property of the new mobile parallel robot (MPR) followed by a prototype-based experimental validation. The work provides a basis for introducing this new class of robots for potential applications in surveillance, industrial automation, construction, transportation, human assistance, medical applications, and other operations in extreme environment such as nuclear plants, Mars, etc. 
    more » « less
  5. null (Ed.)
    In this paper, a novel strategy is designed for trajectory control of a multi-section continuum robot in three-dimensional space to achieve accurate orientation, curvature, and section length tracking. The formulation connects the continuum manipulator dynamic behavior to a virtual discrete-jointed robot whose degrees-of-freedom are directly mapped to those of a continuum robot section. Based on this connection, a computed torque control architecture is developed for the virtual robot, for which inverse kinematics and dynamic equations are constructed and exploited, with appropriate transformations developed for implementation on the continuum robot. The control algorithm is implemented on a six degree-of-freedom two-section OctArm continuum manipulator. Experimental results show that the proposed method managed simultaneous extension/contraction, bending, and torsion actions on multi-section continuum robots with decent tracking performance (steady state arc length and curvature tracking error of merely 3.3mm and 0.13m-1, respectively). These results demonstrate that the proposed method can be applied to multi-section continuum manipulator and perform complex maneuvers within a nonlinear setting. 
    more » « less