skip to main content


Search for: All records

Award ID contains: 1906727

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract

    An extensible continuum manipulator (ECM) has specific advantages over its non-extensible counterparts. For instance, in certain applications, such as minimally invasive surgery or tube inspection, the base motion might be limited or disallowed. The additional extensibility provides the robot with more dexterous manipulation and larger workspace. Existing continuum robot designs achieve extensibility mainly through artificial muscle/pneumatic, extensible backbone, concentric tube, and base extension etc. This paper proposes a new way to achieve this additional motion degree of freedom by taking advantage of the rigid coupling hybrid mechanism concept and a flexible parallel mechanism. More specifically, a rack and pinion set is used to transmit the motion of the i-th subsegment to drive the (i+1)-th subsegment. A six-chain flexible parallel mechanism is used to generate the desired spatial bending and one extension mobility for each subsegment. This way, the new manipulator is able to achieve tail-like spatial bending and worm-like extension at the same time. A proof-of-concept prototype was integrated to verify the mobility of the new mechanism. Corresponding kinematic analyses are conducted to estimate the workspace and the motion non-uniformity.

     
    more » « less
  2. Abstract

    Inspired by nature, continuum robots show their potential in human-centered environments due to the compliant-to-obstacle features and dexterous mobility. However, there are few such robots successfully implemented outside the laboratory so far. One reason is believed to be due to the real time control challenge for soft robots, which require a highly efficient, highly accurate dynamic model. This paper presents a new systematic methodology to formulate the dynamics of constant curvature continuum robots. The new approach builds on several new techniques: 1) using the virtual work principle to formulate the equation of motion, 2) using specifically selected kinematic representations to separate integral variables from the non-integral variables, and 3) using vector representations to put the integral in a compact form. By doing so, the hard-to-solve integrals are evaluated analytically in advance and the accurate inverse dynamics are established accordingly. Numerical simulations are conducted to evaluate the performances of the newly proposed model. 

    more » « less
  3. This paper presents the design, modeling, analysis, and experimental results of a novel bipedal robotic system that utilizes two interconnected single degree-of-freedom (DOF) leg mechanisms to produce stable forward locomotion and steering. The single DOF leg is actuated via a Reuleaux triangle cam-follower mechanism to produce a constant body height foot trajectory. Kinematic analysis and dimension selection of the Reuleaux triangle mechanism is conducted first to generate the desired step height and step length. Leg sequencing is then designed to allow the robot to maintain a constant body height and forward walking velocity. Dynamic simulations and experiments are conducted to evaluate the walking and steering performance. The results show that the robot is able to control its body orientation, maintain a constant body height, and achieve quasi-static locomotion stability. 
    more » « less
  4. Abstract Until recently, most four-legged robots have lacked a feature that is found again and again in nature—a tail. Studies of animal locomotion and robots in the laboratory indicate that leaving out tails has been a design drawback. In fact, research conducted by our lab at Virginia Tech has shown that an articulated robotic tail can effectively maneuver and stabilize a quadruped both for static and dynamic locomotion. 
    more » « less
  5. The traditional locomotion paradigm of quadruped robots is to use dexterous (multi degrees of freedom) legs and dynamically optimized footholds to balance the body and achieve stable locomotion. With the introduction of a robotic tail, a new locomotion paradigm becomes possible as the balancing is achieved by the tail and the legs are only responsible for propulsion. Since the burden on the leg is reduced, leg complexity can be also reduced. This paper explores this new paradigm by tackling the dynamic locomotion control problem of a reduced complexity quadruped (RCQ) with a pendulum tail. For this specific control task, a new control strategy is proposed in a manner that the legs are planned to execute the open-loop gait motion in advance, while the tail is controlled in a closed-loop to prepare the quadruped body in the desired orientation. With these two parts working cooperatively, the quadruped achieves dynamic locomotion. Partial feedback linearization (PFL) controller is used for the closed-loop tail control. Pronking, bounding, and maneuvering are tested to evaluate the controller’s performance. The results validate the proposed controller and demonstrate the feasibility and potential of the new locomotion paradigm. 
    more » « less
  6. null (Ed.)
    Abstract An extensible continuum manipulator (ECM) has specific advantages over its nonextensible counterparts. For instance, in certain applications, such as minimally invasive surgery or pipe inspection, the base motion might be limited or disallowed. The additional extensibility provides the robot with more dexterous manipulation and a larger workspace. Existing continuum robot designs achieve extensibility mainly through artificial muscle/pneumatic, extensible backbone, concentric tube, and base extension, etc. This article proposes a new way to achieve this additional motion degree-of-freedom by taking advantage of the rigid coupling hybrid mechanism concept and a flexible parallel mechanism. More specifically, a rack and pinion set is used to transmit the motion of the i-th subsegment to drive the (i+1)-th subsegment. A six-chain flexible parallel mechanism is used to generate the desired spatial bending and one extension mobility for each subsegment. This way, the new manipulator can achieve tail-like spatial bending and worm-like extension at the same time. Simplified kinematic analyses are conducted to estimate the workspace and the motion nonuniformity. A proof-of-concept prototype was integrated to verify the mechanism’s mobility and to evaluate the kinematic model accuracy. The results show that the proposed mechanism achieved the desired mobilities with a maximum extension ratio of 32.2% and a maximum bending angle of 80 deg. 
    more » « less
  7. Synopsis Serpentine tail structures are widely observed in the animal kingdom and are thought to help animals to handle various motion tasks. Developing serpentine robotic tails and using them on legged robots has been an attractive idea for robotics. This article presents the theoretical analysis for such a robotic system that consists of a reduced complexity quadruped and a serpentine robotic tail. Dynamic model and motion controller are formulated first. Simulations are then conducted to analyze the tail’s performance on the airborne righting and maneuvering tasks of the quadruped. Using the established simulation environment, systematic analyses on critical design parameters, namely, the tail mounting point, tail length, torso center of mass (COM) location, tail–torso mass ratio, and the power consumption distribution, are performed. The results show that the tail length and the mass ratio influence the maneuvering angle the most while the COM location affects the landing stability the most. Based on these design guidelines, for the current robot design, the optimal tail parameters are determined as a length of two times as long as the torso length and a weight of 0.09 times as heavy as the torso weight. 
    more » « less