skip to main content

Title: Tuning interactions between spins in a superconductor

Novel many-body and topological electronic phases can be created in assemblies of interacting spins coupled to a superconductor, such as one-dimensional topological superconductors with Majorana zero modes (MZMs) at their ends. Understanding and controlling interactions between spins and the emergent band structure of the in-gap Yu–Shiba–Rusinov (YSR) states they induce in a superconductor are fundamental for engineering such phases. Here, by precisely positioning magnetic adatoms with a scanning tunneling microscope (STM), we demonstrate both the tunability of exchange interaction between spins and precise control of the hybridization of YSR states they induce on the surface of a bismuth (Bi) thin film that is made superconducting with the proximity effect. In this platform, depending on the separation of spins, the interplay among Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction, spin–orbit coupling, and surface magnetic anisotropy stabilizes different types of spin alignments. Using high-resolution STM spectroscopy at millikelvin temperatures, we probe these spin alignments through monitoring the spin-induced YSR states and their energy splitting. Such measurements also reveal a quantum phase transition between the ground states with different electron number parity for a pair of spins in a superconductor tuned by their separation. Experiments on larger assemblies show that spin–spin interactions can be mediated in a more » superconductor over long distances. Our results show that controlling hybridization of the YSR states in this platform provides the possibility of engineering the band structure of such states for creating topological phases.

« less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1904442 1420541 2011750 1608848
Publication Date:
NSF-PAR ID:
10219316
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
14
Page Range or eLocation-ID:
Article No. e2024837118
ISSN:
0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Isolated spins are the focus of intense scientific exploration due to their potential role as qubits for quantum information science. Optical access to single spins, demonstrated in III-V semiconducting quantum dots, has fueled research aimed at realizing quantum networks. More recently, quantum emitters in atomically thin materials such as tungsten diselenide have been demonstrated to host optically addressable single spins by means of electrostatic doping the localized excitons. Electrostatic doping is not the only route to charging localized quantum emitters and another path forward is through band structure engineering using van der Waals heterojunctions. Critical to this second approach is to interface tungsten diselenide with other van der Waals materials with relative band-alignments conducive to the phenomenon of charge transfer. In this work we show that the Type-II band-alignment between tungsten diselenide and chromium triiodide can be exploited to excite localized charged excitons in tungsten diselenide. Leveraging spin-dependent charge transfer in the device, we demonstrate spin selectivity in the preparation of the spin-valley state of localized single holes. Combined with the use of strain-inducing nanopillars to coordinate the spatial location of tungsten diselenide quantum emitters, we uncover the possibility of realizing large-scale deterministic arrays of optically addressable spin-valley holesmore »in a solid state platform.

    « less
  2. The interplay between magnetic fields and interacting particles can lead to exotic phases of matter that exhibit topological order and high degrees of spatial entanglement1. Although these phases were discovered in a solid-state setting2,3, recent innovations in systems of ultracold neutral atoms—uncharged atoms that do not naturally experience a Lorentz force—allow the synthesis of artificial magnetic, or gauge, fields4,5,6,7,8,9,10. This experimental platform holds promise for exploring exotic physics in fractional quantum Hall systems, owing to the microscopic control and precision that is achievable in cold-atom systems11,12. However, so far these experiments have mostly explored the regime of weak interactions, which precludes access to correlated many-body states4,13,14,15,16,17. Here, through microscopic atomic control and detection, we demonstrate the controlled incorporation of strong interactions into a two-body system with a chiral band structure. We observe and explain the way in which interparticle interactions induce chirality in the propagation dynamics of particles in a ladder-like, real-space lattice governed by the interacting Harper–Hofstadter model, which describes lattice-confined, coherently mobile particles in the presence of a magnetic field18. We use a bottom-up strategy to prepare interacting chiral quantum states, thus circumventing the challenges of a top-down approach that begins with a many-body system, the size ofmore »which can hinder the preparation of controlled states. Our experimental platform combines all of the necessary components for investigating highly entangled topological states, and our observations provide a benchmark for future experiments in the fractional quantum Hall regime.« less
  3. Chiral magnets have recently emerged as hosts for topological spin textures and related transport phenomena, which can find use in next-generation spintronic devices. The coupling between structural chirality and noncollinear magnetism is crucial for the stabilization of complex spin structures such as magnetic skyrmions. Most studies have been focused on the physical properties in homochiral states favored by crystal growth and the absence of long-ranged interactions between domains of opposite chirality. Therefore, effects of the high density of chiral domains and domain boundaries on magnetic states have been rarely explored so far. Herein, we report layered heterochiral Cr1/3TaS2, exhibiting numerous chiral domains forming topological defects and a nanometer-scale helimagnetic order interlocked with the structural chirality. Tuning the chiral domain density, we discovered a macroscopic topological magnetic texture inside each chiral domain that has an appearance of a spiral magnetic superstructure composed of quasiperiodic Néel domain walls. The spirality of this object can have either sign and is decoupled from the structural chirality. In weak, in-plane magnetic fields, it transforms into a nonspiral array of concentric ring domains. Numerical simulations suggest that this magnetic superstructure is stabilized by strains in the heterochiral state favoring noncollinear spins. Our results unveil topological structure/spinmore »couplings in a wide range of different length scales and highly tunable spin textures in heterochiral magnets.

    « less
  4. One of the most exciting areas of research in quantum condensed matter physics is the push to create topologically protected qubits using non-Abelian anyons. The focus of these efforts has been Majorana zero modes (MZMs), which are predicted to emerge as localized zero-energy states at the ends of 1D topological superconductors. A key role in the search for experimental signatures of these quasiparticles has been played by the scanning tunnelling microscope (STM). The power of high-resolution STM techniques is perhaps best illustrated by their application in identifying MZMs in 1D chains of magnetic atoms on the surface of a superconductor. In this platform, STM spectroscopic mapping has demonstrated the localized nature of MZM zero-energy excitations at the ends of such chains, and experiments with superconducting and magnetic STM tips have been used to uniquely distinguish them from trivial edge modes. Beyond the atomic chains, STM has also uncovered signatures of MZMs in 2D materials and topological surface and boundary states, when they are subjected to the superconducting proximity effect. Looking ahead, future STM experiments may be able to demonstrate the non-Abelian statistics of MZMs.
  5. Monolayer group V transition metal dichalcogenides in their 1T phase have recently emerged as a platform to investigate rich phases of matter, such as spin liquid and ferromagnetism, resulting from strong electron correlations. Newly emerging 1T-NbSe 2 has inspired theoretical investigations predicting collective phenomena such as charge transfer gap and ferromagnetism in two dimensions; however, the experimental evidence is still lacking. Here, by controlling the molecular beam epitaxy growth parameters, we demonstrate the successful growth of high-quality single-phase 1T-NbSe 2 . By combining scanning tunneling microscopy/spectroscopy and ab initio calculations, we show that this system is a charge transfer insulator with the upper Hubbard band located above the valence band maximum. To demonstrate the electron correlation resulted magnetic property, we create a vertical 1T/2H NbSe 2 heterostructure, and we find unambiguous evidence of exchange interactions between the localized magnetic moments in 1T phase and the metallic/superconducting phase exemplified by Kondo resonances and Yu-Shiba-Rusinov–like bound states.