The voltage-sensing domain (VSD) is a four-helix modular protein domain that converts electrical signals into conformational changes, leading to open pores and active enzymes. In most voltage-sensing proteins, the VSDs do not interact with one another, and the S1–S3 helices are considered mainly scaffolding, except in the voltage-sensing phosphatase (VSP) and the proton channel (Hv). To investigate its contribution to VSP function, we mutated four hydrophobic amino acids in S1 to alanine (F127, I131, I134, and L137), individually or in combination. Most of these mutations shifted the voltage dependence of activity to higher voltages; however, not all substrate reactions were the same. The kinetics of enzymatic activity were also altered, with some mutations significantly slowing down dephosphorylation. The voltage dependence of VSD motions was consistently shifted to lower voltages and indicated a second voltage-dependent motion. Additionally, none of the mutations broke the VSP dimer, indicating that the S1 impact could stem from intra- and/or intersubunit interactions. Lastly, when the same mutations were introduced into a genetically encoded voltage indicator, they dramatically altered the optical readings, making some of the kinetics faster and shifting the voltage dependence. These results indicate that the S1 helix in VSP plays a critical role in tuning the enzyme’s conformational response to membrane potential transients and influencing the function of the VSD.
more »
« less
Mapping temperature-dependent conformational change in the voltage-sensing domain of an engineered heat-activated K + channel
Temperature-dependent regulation of ion channel activity is critical for a variety of physiological processes ranging from immune response to perception of noxious stimuli. Our understanding of the structural mechanisms that underlie temperature sensing remains limited, in part due to the difficulty of combining high-resolution structural analysis with temperature stimulus. Here, we use NMR to compare the temperature-dependent behavior of Shaker potassium channel voltage sensor domain (WT-VSD) to its engineered temperature sensitive (TS-VSD) variant. Further insight into the molecular basis for temperature-dependent behavior is obtained by analyzing the experimental results together with molecular dynamics simulations. Our studies reveal that the overall secondary structure of the engineered TS-VSD is identical to the wild-type channels except for local changes in backbone torsion angles near the site of substitution (V369S and F370S). Remarkably however, these structural differences result in increased hydration of the voltage-sensing arginines and the S4–S5 linker helix in the TS-VSD at higher temperatures, in contrast to the WT-VSD. These findings highlight how subtle differences in the primary structure can result in large-scale changes in solvation and thereby confer increased temperature-dependent activity beyond that predicted by linear summation of solvation energies of individual substituents.
more »
« less
- Award ID(s):
- 1829555
- PAR ID:
- 10219320
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 14
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. e2017280118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An Autonomous Molecular Bioluminescent Reporter (AMBER) for Voltage Imaging in Freely Moving AnimalsAbstract Genetically encoded reporters have greatly increased our understanding of biology. While fluorescent reporters have been widely used, photostability and phototoxicity have hindered their use in long‐term experiments. Bioluminescence overcomes some of these challenges but requires the addition of an exogenous luciferin limiting its use. Using a modular approach, Autonomous Molecular BioluminEscent Reporter (AMBER), an indicator of membrane potential is engineered. Unlike other bioluminescent systems, AMBER is a voltage‐gated luciferase coupling the functionalities of the Ciona voltage‐sensing domain (VSD) and bacterial luciferase, luxAB. When co‐expressed with the luciferin‐producing genes, AMBER reversibly switches the bioluminescent intensity as a function of membrane potential. Using biophysical and biochemical methods, it is shown that AMBER switches its enzymatic activity from an OFF to an ON state as a function of the membrane potential. Upon depolarization, AMBER switches from a low to a high enzymatic activity state, showing a several‐fold increase in the bioluminescence output (ΔL/L). AMBER in the pharyngeal muscles and mechanosensory touch neurons ofCaenorhabditis elegansis expressed. Using the compressed sensing approach, the electropharingeogram of theC. eleganspharynx is reconstructed, validating the sensor in vivo. Thus, AMBER represents the first fully genetically encoded bioluminescent reporter without requiring exogenous luciferin addition.more » « less
-
Kuhnel, Karen (Ed.)Enzyme activity varies with temperature. Unlike small-molecule catalysts, the structural ensembles of enzymes can change substantially with temperature, but it is unclear how this modulates temperature dependent activity. Here, multi-temperature X-ray crystallography was used to record structural changes from -20C to 40C for a mesophilic enzyme in complex with inhibitors mimicking substrate-, intermediate-, and product-bound states, representative of major complexes on the reaction coordinate. Inhibitors, substrates and active site loops increasingly populated catalytically competent conformations as temperature increased. These changes occurred even in temperature ranges where kinetic measurements showed roughly linear Arrhenius/Eyring behavior, where parameters characterizing the system are assumed to be temperature independent. Simple analysis shows that linear Arrhenius/Eyring behavior can still be observed when the underlying activation energy/enthalpy values vary with temperature. Our results indicate a critical role for temperature dependent atomic-resolution structural data in interpreting temperature dependent kinetic data from enzymatic systems.more » « less
-
Transient receptor potential (TRP) proteins are a large family of cation-selective channels, surpassed in variety only by voltage-gated potassium channels. Detailed molecular mechanisms governing how membrane voltage, ligand binding, or temperature can induce conformational changes promoting the open state in TRP channels are still a matter of debate. Aiming to unveil distinctive structural features common to the transmembrane domains within the TRP family, we performed phylogenetic reconstruction, sequence statistics, and structural analysis over a large set of TRP channel genes. Here, we report an exceptionally conserved set of residues. This fingerprint is composed of twelve residues localized at equivalent three-dimensional positions in TRP channels from the different subtypes. Moreover, these amino acids are arranged in three groups, connected by a set of aromatics located at the core of the transmembrane structure. We hypothesize that differences in the connectivity between these different groups of residues harbor the apparent differences in coupling strategies used by TRP subgroups.more » « less
-
null (Ed.)Connexins form intercellular communication channels, known as gap junctions (GJs), that facilitate diverse physiological roles, from long-range electrical and chemical coupling to coordinating development and nutrient exchange. GJs formed by different connexin isoforms harbour unique channel properties that have not been fully defined mechanistically. Recent structural studies on Cx46 and Cx50 defined a novel and stable open state and implicated the amino-terminal (NT) domain as a major contributor for isoform-specific functional differences between these closely related lens connexins. To better understand these differences, we constructed models corresponding to wildtype Cx50 and Cx46 GJs, NT domain swapped chimeras, and point variants at the 9th residue for comparative molecular dynamics (MD) simulation and electrophysiology studies. All constructs formed functional GJ channels, except the chimeric Cx46-50NT variant, which correlated with an introduced steric clash and increased dynamical behaviour (instability) of the NT domain observed by MD simulation. Single channel conductance correlated well with free-energy landscapes predicted by MD, but resulted in a surprisingly greater degree of effect. Additionally, we observed significant effects on transjunctional voltage-dependent gating (Vj gating) and/or open state dwell times induced by the designed NT domain variants. Together, these studies indicate intra- and inter-subunit interactions involving both hydrophobic and charged residues within the NT domains of Cx46 and Cx50 play important roles in defining GJ open state stability and single channel conductance, and establish the open state Cx46/50 structural models as archetypes for structure–function studies targeted at elucidating GJ channel mechanisms and the molecular basis of cataract-linked connexin variants.more » « less
An official website of the United States government
