skip to main content


Title: The dynamics of cable bacteria colonization in surface sediments: a 2D view
Abstract

Cable bacteria that are capable of transporting electrons on centimeter scales have been found in a variety of sediment types, where their activity can strongly influence diagenetic reactions and elemental cycling. In this study, the patterns of spatial and temporal colonization of surficial sediment by cable bacteria were revealed in two-dimensions by planar pH and H2S optical sensors for the first time. The characteristic sediment surface pH maximum zones begin to develop from isolated micro-regions and spread horizontally within 5 days, with lateral spreading rates from 0.3 to ~ 1.2 cm day−1. Electrogenic anodic zones in the anoxic sediments are characterized by low pH, and the coupled pH minima also expand with time. H2S heterogeneities in accordance with electrogenic colonization are also observed. Cable bacteria cell abundance in oxic surface sediment (0–0.25 cm) kept almost constant during the colonization period; however, subsurface cell abundance apparently increased as electrogenic activity expanded across the entire surface. Changes in cell abundance are consistent with filament coiling and growth in the anodic zone (i.e., cathodic snorkels). The spreading mechanism for the sediment pH–H2S fingerprints and the cable bacteria abundance dynamics suggest that once favorable microenvironments are established, filamentous cable bacteria aggregate or locally activate electrogenic metabolism. Different development dynamics in otherwise similar sediment suggests that the accessibility of reductant (e.g., dissolved phase sulfide) is critical in controlling the growth of cable bacteria.

 
more » « less
Award ID(s):
1737749
NSF-PAR ID:
10219365
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cable bacteria are multicellular filamentous bacteria that conduct electrons nonlocally between anoxic and oxic sediment regions, creating characteristic electrogenic pH fingerprints. These microbes aggregate in 3D patterns near biogenic structures, and filament fragments are also dispersed throughout deposits. Utilizing pH-sensitive planar optodes to investigate the dynamic response of electrogenic pH fingerprints to sediment reworking, we found that mobile bioturbators like nereid polychaetes (ragworms) can disturb the pH signatures. Sudden sediment disturbance associated with burrows at sub- to multi-centimeter scales eliminates detection of pH signatures. However, electrogenic pH fingerprints can recover in as little as 13 h near abandoned, closed burrows. Sequential collapse and regeneration of electrogenic pH fingerprints are associated with occupied and dynamic burrow structures, with the response time positively related to the scale of disturbance. In the case of relatively stable tube structures, built by benthos like spionid polychaetes and extending mm to cm into deposits, the electrogenic pH fingerprint is evident around the subsurface tubes. Cable filaments clearly associate with subsurface regions of enhanced solute exchange (oxidant supply) and relatively stable biogenic structures, including individual tubes and patches of tubes (e.g. made by Sabaco , a bamboo worm). Physically stable environments, favorable redox gradients, and enhanced organic/inorganic substrate availability promote the activity of cable bacteria in the vicinity of tubes and burrows. These findings suggest complex interactions between electrogenic activity fingerprints and species-specific patterns of bioturbation at multiple spatial and temporal scales, and a substantial impact of electrogenic metabolism on subsurface pH and early diagenetic reaction distributions in bioturbated deposits. 
    more » « less
  2. Abstract

    Marine cable bacteria (Candidatus Electrothrix) and large colorless sulfur‐oxidizing bacteria (e.g., Beggiatoaceae) are widespread thiotrophs in coastal environments but may exert different influences on biogeochemical cycling. Yet, the factors governing their niche partitioning remain poorly understood. To map their distribution and evaluate their growth constraints in a natural setting, we examined surface sediments across seasons at two sites with contrasting levels of seasonal oxygen depletion in Chesapeake Bay using microscopy coupled with 16S rRNA gene amplicon sequencing and biogeochemical characterization. We found that cable bacteria, dominated by a single phylotype closely affiliated toCandidatus Electrothrixcommunis, flourished during winter and spring at a central channel site which experiences summer anoxia. Here, cable bacteria density was positively correlated with surface sediment chlorophyll, a proxy of phytodetritus sedimentation. Cable bacteria were also present with a lower areal density at an adjacent shoal site which supports bioturbating macrofauna. Beggiatoaceae were more abundant at this site, where their biomass was positively correlated with sediment respiration, but additionally potentially inhibited by sulfide accumulation which was evident during one summer. A springtime phytodetritus sedimentation event was associated with a proliferation of Beggiatoaceae and multipleCandidatus Electrothrixphylotypes, with cable bacteria reaching 1000 m length cm−2. These observations indicate the potential impact of a spring bloom in driving a hot moment of cryptic sulfur cycling. Our results suggest complex interactions between benthic thiotroph populations, with bioturbation and seasonal oscillations in bottom water dissolved oxygen, sediment sulfide, and organic matter influx as important drivers of their distribution.

     
    more » « less
  3. Abstract

    Pairing the electrocatalytic hydrogenation (ECH) reaction with different anodic reactions holds great promise for producing value‐added chemicals driven by renewable energy sources. Replacing the sluggish water oxidation with a bio‐based upgrading reaction can reduce the overall energy cost and allows for the simultaneous generation of high‐value products at both electrodes. Herein, we developed a membrane‐electrode assembly (MEA)‐based electrolysis system for the conversion of 5‐(hydroxymethyl)furfural (HMF) to bis(hydroxymethyl)furan (BHMF) and 2,5‐furandicarboxylic acid (FDCA). With (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO)‐mediated electrochemical oxidation (ECO) of HMF at the anode, the unique zero‐gap configuration enabled a minimal cell voltage of 1.5 V at 10 mA, which was stable during a 24‐hour period of continuous electrolysis, resulting in a combined faradaic efficiency (FE) as high as 139 % to BHMF and FDCA. High FE was also obtained in a pH‐asymmetric mediator‐free configuration, in which the ECO was carried out in 0.1 M KOH with an electrodeposited NiFe oxide catalyst and a bipolar membrane. Taking advantage of the low cell resistance of the MEA‐based system, we also explored ECH of HMF at high current density (280 mA cm−2), in which a FE of 24 % towards BHMF was achieved. The co‐generated H2was supplied into a batch reactor in tandem for the catalytic hydrogenation of furfural or benzaldehyde under ambient conditions, resulting in an additional 7.3 % of indirect FE in a single‐pass operation. The co‐electrolysis of bio‐derived molecules and the tandem electrocatalytic‐catalytic process provide sustainable avenues towards distributed, flexible, and energy‐efficient routes for the synthesis of valuable chemicals.

     
    more » « less
  4. Electrogenic cable bacteria can couple spatially separated redox reaction zones in marine sediments using multicellular filaments as electron conductors. Reported as generally absent from disturbed sediments, we have found subsurface cable aggregations associated with tubes of the parchment worm Chaetopterus variopedatus in otherwise intensely bioturbated deposits. Cable bacteria tap into tubes, which act as oxygenated conduits, creating a three-dimensional conducting network extending decimeters into sulfidic deposits. By elevating pH, promoting Mn, Fe-oxide precipitation in tube linings, and depleting S around tubes, they enhance tube preservation and favorable biogeochemical conditions within the tube. The presence of disseminated filaments a few cells in length away from oxygenated interfaces and the reported ability of cable bacteria to use a range of redox reaction couples suggest that these microbes are ubiquitous facultative opportunists and that long filaments are an end-member morphological adaptation to relatively stable redox domains. 
    more » « less
  5. Summary

    We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth inArabidopsis thaliana(Col‐0).

    Patch‐clamp whole‐cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+]cyt). We investigated the pollen‐expressed proteinsAtSLAH3,AtALMT12,AtTMEM16 andAtCCCas the putative anion transporters responsible for these currents.

    AtCCCGFPwas observed at the shank andAtSLAH3‐GFPat the tip and shank of thePTplasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip ofPTs with an anion vibrating probe were significantly lower inslah3−/−andccc−/−mutants, but unaffected inalmt12−/−andtmem16−/−. We further characterised the effect ofpHandGABAby patch clamp. Strong regulation by extracellularpHwas observed in the wild‐type, but not intmem16−/−. Our results are compatible withAtTMEM16 functioning as an anion/H+cotransporter and therefore, as a putativepHsensor.GABApresence: (1) inhibited the overall currents, an effect that is abrogated in thealmt12−/−and (2) reduced the current inAtALMT12 transfectedCOS‐7 cells, strongly suggesting the direct interaction ofGABAwithAtALMT12.

    Our data show thatAtSLAH3 andAtCCCactivity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linkingPTgrowth modulation bypH,GABA, and [Ca2+]cytthrough anionic transporters.

     
    more » « less