skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The dynamics of cable bacteria colonization in surface sediments: a 2D view
Abstract Cable bacteria that are capable of transporting electrons on centimeter scales have been found in a variety of sediment types, where their activity can strongly influence diagenetic reactions and elemental cycling. In this study, the patterns of spatial and temporal colonization of surficial sediment by cable bacteria were revealed in two-dimensions by planar pH and H2S optical sensors for the first time. The characteristic sediment surface pH maximum zones begin to develop from isolated micro-regions and spread horizontally within 5 days, with lateral spreading rates from 0.3 to ~ 1.2 cm day−1. Electrogenic anodic zones in the anoxic sediments are characterized by low pH, and the coupled pH minima also expand with time. H2S heterogeneities in accordance with electrogenic colonization are also observed. Cable bacteria cell abundance in oxic surface sediment (0–0.25 cm) kept almost constant during the colonization period; however, subsurface cell abundance apparently increased as electrogenic activity expanded across the entire surface. Changes in cell abundance are consistent with filament coiling and growth in the anodic zone (i.e., cathodic snorkels). The spreading mechanism for the sediment pH–H2S fingerprints and the cable bacteria abundance dynamics suggest that once favorable microenvironments are established, filamentous cable bacteria aggregate or locally activate electrogenic metabolism. Different development dynamics in otherwise similar sediment suggests that the accessibility of reductant (e.g., dissolved phase sulfide) is critical in controlling the growth of cable bacteria.  more » « less
Award ID(s):
1737749
PAR ID:
10219365
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cable bacteria are multicellular filamentous bacteria that conduct electrons nonlocally between anoxic and oxic sediment regions, creating characteristic electrogenic pH fingerprints. These microbes aggregate in 3D patterns near biogenic structures, and filament fragments are also dispersed throughout deposits. Utilizing pH-sensitive planar optodes to investigate the dynamic response of electrogenic pH fingerprints to sediment reworking, we found that mobile bioturbators like nereid polychaetes (ragworms) can disturb the pH signatures. Sudden sediment disturbance associated with burrows at sub- to multi-centimeter scales eliminates detection of pH signatures. However, electrogenic pH fingerprints can recover in as little as 13 h near abandoned, closed burrows. Sequential collapse and regeneration of electrogenic pH fingerprints are associated with occupied and dynamic burrow structures, with the response time positively related to the scale of disturbance. In the case of relatively stable tube structures, built by benthos like spionid polychaetes and extending mm to cm into deposits, the electrogenic pH fingerprint is evident around the subsurface tubes. Cable filaments clearly associate with subsurface regions of enhanced solute exchange (oxidant supply) and relatively stable biogenic structures, including individual tubes and patches of tubes (e.g. made by Sabaco , a bamboo worm). Physically stable environments, favorable redox gradients, and enhanced organic/inorganic substrate availability promote the activity of cable bacteria in the vicinity of tubes and burrows. These findings suggest complex interactions between electrogenic activity fingerprints and species-specific patterns of bioturbation at multiple spatial and temporal scales, and a substantial impact of electrogenic metabolism on subsurface pH and early diagenetic reaction distributions in bioturbated deposits. 
    more » « less
  2. Electrogenic cable bacteria can couple spatially separated redox reaction zones in marine sediments using multicellular filaments as electron conductors. Reported as generally absent from disturbed sediments, we have found subsurface cable aggregations associated with tubes of the parchment worm Chaetopterus variopedatus in otherwise intensely bioturbated deposits. Cable bacteria tap into tubes, which act as oxygenated conduits, creating a three-dimensional conducting network extending decimeters into sulfidic deposits. By elevating pH, promoting Mn, Fe-oxide precipitation in tube linings, and depleting S around tubes, they enhance tube preservation and favorable biogeochemical conditions within the tube. The presence of disseminated filaments a few cells in length away from oxygenated interfaces and the reported ability of cable bacteria to use a range of redox reaction couples suggest that these microbes are ubiquitous facultative opportunists and that long filaments are an end-member morphological adaptation to relatively stable redox domains. 
    more » « less
  3. Abstract Marine cable bacteria (Candidatus Electrothrix) and large colorless sulfur‐oxidizing bacteria (e.g., Beggiatoaceae) are widespread thiotrophs in coastal environments but may exert different influences on biogeochemical cycling. Yet, the factors governing their niche partitioning remain poorly understood. To map their distribution and evaluate their growth constraints in a natural setting, we examined surface sediments across seasons at two sites with contrasting levels of seasonal oxygen depletion in Chesapeake Bay using microscopy coupled with 16S rRNA gene amplicon sequencing and biogeochemical characterization. We found that cable bacteria, dominated by a single phylotype closely affiliated toCandidatus Electrothrixcommunis, flourished during winter and spring at a central channel site which experiences summer anoxia. Here, cable bacteria density was positively correlated with surface sediment chlorophyll, a proxy of phytodetritus sedimentation. Cable bacteria were also present with a lower areal density at an adjacent shoal site which supports bioturbating macrofauna. Beggiatoaceae were more abundant at this site, where their biomass was positively correlated with sediment respiration, but additionally potentially inhibited by sulfide accumulation which was evident during one summer. A springtime phytodetritus sedimentation event was associated with a proliferation of Beggiatoaceae and multipleCandidatus Electrothrixphylotypes, with cable bacteria reaching 1000 m length cm−2. These observations indicate the potential impact of a spring bloom in driving a hot moment of cryptic sulfur cycling. Our results suggest complex interactions between benthic thiotroph populations, with bioturbation and seasonal oscillations in bottom water dissolved oxygen, sediment sulfide, and organic matter influx as important drivers of their distribution. 
    more » « less
  4. Abstract Cable bacteria are long, filamentous, multicellular bacteria that grow in marine sediments and couple sulfide oxidation to oxygen reduction over centimetre‐scale distances via long‐distance electron transport. Cable bacteria can strongly modify biogeochemical cycling and may affect microbial community networks. Here we examine interspecific interactions with marine cable bacteria (Ca. Electrothrix) by monitoring the succession of 16S rRNA amplicons (DNA and RNA) and cell abundance across depth and time, contrasting sediments with and without cable bacteria growth. In the oxic zone, cable bacteria activity was positively associated with abundant predatory bacteria (Bdellovibrionota, Myxococcota, Bradymonadales), indicating putative predation on cathodic cells. At suboxic depths, cable bacteria activity was positively associated with sulfate‐reducing and magnetotactic bacteria, consistent with cable bacteria functioning as ecosystem engineers that modify their local biogeochemical environment, benefitting certain microbes. Cable bacteria activity was negatively associated with chemoautotrophic sulfur‐oxidizing Gammaproteobacteria (Thiogranum,Sedimenticola) at oxic depths, suggesting competition, and positively correlated with these taxa at suboxic depths, suggesting syntrophy and/or facilitation. These observations are consistent with chemoautotrophic sulfur oxidizers benefitting from an oxidizing potential imparted by cable bacteria at suboxic depths, possibly by using cable bacteria as acceptors for electrons or electron equivalents, but by an as yet enigmatic mechanism. 
    more » « less
  5. Abstract Elemental sulfur (S80)‐oxidising Sulfolobales (Archaea) dominate high‐temperature acidic hot springs (>80°C, pH <4). However, genomic analyses of S80‐oxidising members of the Sulfolobales reveal a patchy distribution of genes encoding sulfur oxygenase reductase (SOR), an S80disproportionating enzyme attributed to S80oxidation. Here, we report the S80‐dependent growth of two Sulfolobales strains previously isolated from acidic hot springs in Yellowstone National Park, one of which associated with bulk S80during growth and one that did not. The genomes of each strain encoded different sulfur metabolism enzymes, with only one encoding SOR. Dialysis membrane experiments showed that direct contact is not required for S80oxidation in the SOR‐encoding strain. This is attributed to the generation of hydrogen sulfide (H2S) from S80disproportionation that can diffuse out of the cell to solubilise bulk S80to form soluble polysulfides (Sx2−) and/or S80nanoparticles that readily diffuse across dialysis membranes. The Sulfolobales strain lacking SOR required direct contact to oxidise S80, which could be overcome by the addition of H2S. High concentrations of S80inhibited the growth of both strains. These results implicate alternative strategies to acquire and metabolise sulfur in Sulfolobales and have implications for their distribution and ecology in their hot spring habitats. 
    more » « less