skip to main content


Title: Biogenic structures and cable bacteria interactions: redox domain residence times and the generation of complex pH distributions
Cable bacteria are multicellular filamentous bacteria that conduct electrons nonlocally between anoxic and oxic sediment regions, creating characteristic electrogenic pH fingerprints. These microbes aggregate in 3D patterns near biogenic structures, and filament fragments are also dispersed throughout deposits. Utilizing pH-sensitive planar optodes to investigate the dynamic response of electrogenic pH fingerprints to sediment reworking, we found that mobile bioturbators like nereid polychaetes (ragworms) can disturb the pH signatures. Sudden sediment disturbance associated with burrows at sub- to multi-centimeter scales eliminates detection of pH signatures. However, electrogenic pH fingerprints can recover in as little as 13 h near abandoned, closed burrows. Sequential collapse and regeneration of electrogenic pH fingerprints are associated with occupied and dynamic burrow structures, with the response time positively related to the scale of disturbance. In the case of relatively stable tube structures, built by benthos like spionid polychaetes and extending mm to cm into deposits, the electrogenic pH fingerprint is evident around the subsurface tubes. Cable filaments clearly associate with subsurface regions of enhanced solute exchange (oxidant supply) and relatively stable biogenic structures, including individual tubes and patches of tubes (e.g. made by Sabaco , a bamboo worm). Physically stable environments, favorable redox gradients, and enhanced organic/inorganic substrate availability promote the activity of cable bacteria in the vicinity of tubes and burrows. These findings suggest complex interactions between electrogenic activity fingerprints and species-specific patterns of bioturbation at multiple spatial and temporal scales, and a substantial impact of electrogenic metabolism on subsurface pH and early diagenetic reaction distributions in bioturbated deposits.  more » « less
Award ID(s):
1737749
NSF-PAR ID:
10278356
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
669
ISSN:
0171-8630
Page Range / eLocation ID:
51 to 63
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cable bacteria that are capable of transporting electrons on centimeter scales have been found in a variety of sediment types, where their activity can strongly influence diagenetic reactions and elemental cycling. In this study, the patterns of spatial and temporal colonization of surficial sediment by cable bacteria were revealed in two-dimensions by planar pH and H2S optical sensors for the first time. The characteristic sediment surface pH maximum zones begin to develop from isolated micro-regions and spread horizontally within 5 days, with lateral spreading rates from 0.3 to ~ 1.2 cm day−1. Electrogenic anodic zones in the anoxic sediments are characterized by low pH, and the coupled pH minima also expand with time. H2S heterogeneities in accordance with electrogenic colonization are also observed. Cable bacteria cell abundance in oxic surface sediment (0–0.25 cm) kept almost constant during the colonization period; however, subsurface cell abundance apparently increased as electrogenic activity expanded across the entire surface. Changes in cell abundance are consistent with filament coiling and growth in the anodic zone (i.e., cathodic snorkels). The spreading mechanism for the sediment pH–H2S fingerprints and the cable bacteria abundance dynamics suggest that once favorable microenvironments are established, filamentous cable bacteria aggregate or locally activate electrogenic metabolism. Different development dynamics in otherwise similar sediment suggests that the accessibility of reductant (e.g., dissolved phase sulfide) is critical in controlling the growth of cable bacteria.

     
    more » « less
  2. Electrogenic cable bacteria can couple spatially separated redox reaction zones in marine sediments using multicellular filaments as electron conductors. Reported as generally absent from disturbed sediments, we have found subsurface cable aggregations associated with tubes of the parchment worm Chaetopterus variopedatus in otherwise intensely bioturbated deposits. Cable bacteria tap into tubes, which act as oxygenated conduits, creating a three-dimensional conducting network extending decimeters into sulfidic deposits. By elevating pH, promoting Mn, Fe-oxide precipitation in tube linings, and depleting S around tubes, they enhance tube preservation and favorable biogeochemical conditions within the tube. The presence of disseminated filaments a few cells in length away from oxygenated interfaces and the reported ability of cable bacteria to use a range of redox reaction couples suggest that these microbes are ubiquitous facultative opportunists and that long filaments are an end-member morphological adaptation to relatively stable redox domains. 
    more » « less
  3. null (Ed.)
    The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a coordinated, multiexpedition International Ocean Discovery Program (IODP) drilling project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. The fundamental scientific objectives of the NanTroSEIZE drilling project include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. IODP Expedition 365 is part of NanTroSEIZE Stage 3, with the following primary objectives: (1) retrieval of a temporary observatory at Site C0010 that has been monitoring temperature and pore pressure within the major splay thrust fault (termed the “megasplay”) at 400 meters below seafloor since November 2010 and (2) deployment of a complex long-term borehole monitoring system (LTBMS) that will be connected to the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) seafloor cabled observatory network postexpedition (anticipated June 2016). The LTBMS incorporates multilevel pore pressure sensing, a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. Together with an existing observatory at Integrated Ocean Drilling Program Site C0002 and a possible future installation near the trench, the Site C0010 observatory will allow monitoring within and above regions of contrasting behavior of the megasplay fault and the plate boundary as a whole. These include a site above the updip edge of the locked zone (Site C0002), a shallow site in the megasplay fault zone and its footwall (Site C0010), and a site at the tip of the accretionary prism (Integrated Ocean Drilling Program Site C0006). Together, this suite of observatories has the potential to capture deformation spanning a wide range of timescales (e.g., seismic and microseismic activity, slow slip, and interseismic strain accumulation) across a transect from near-trench to the seismogenic zone. Site C0010 is located 3.5 km along strike to the southwest of Integrated Ocean Drilling Program Site C0004. The site was drilled and cased during Integrated Ocean Drilling Program Expedition 319, with casing screens spanning a ~20 m interval that includes the megasplay fault, and suspended with a temporary instrument package (a “SmartPlug”). During Integrated Ocean Drilling Program Expedition 332 in late 2010, the instrument package was replaced with an upgraded sensor package (the “GeniusPlug”), which included pressure and temperature sensors and a set of geochemical and biological experiments. Expedition 365 achieved its primary scientific and operational objectives, including recovery of the GeniusPlug with a >5 y record of pressure and temperature conditions within the shallow megasplay fault zone, geochemical samples, and its in situ microbial colonization experiment; and installation of the LTBMS. The pressure records from the GeniusPlug include high-quality records of formation and seafloor responses to multiple fault slip events, including the 11 March 2011 Tohoku M9 and 1 April 2016 Mie-ken Nanto-oki M6 earthquakes. The geochemical sampling coils yielded in situ pore fluids from the splay fault zone, and microbes were successfully cultivated from the colonization unit. The complex sensor array, in combination with the multilevel hole completion, is one of the most ambitious and sophisticated observatory installations in scientific ocean drilling (similar to that in Hole C0002G, deployed in 2010). Overall, the installation went smoothly, efficiently, and ahead of schedule. The extra time afforded by the efficient observatory deployment was used for coring in Holes C0010B–C0010E. Despite challenging hole conditions, the depth interval corresponding to the screened casing across the megasplay fault was successfully sampled in Hole C0010C, and the footwall of the megasplay was sampled in Hole C0010E, with >50% recovery for both zones. In the hanging wall of the megasplay fault (Holes C0010C and C0010D), we recovered indurated silty clay with occasional ash layers and sedimentary breccias. Some of the deposits show burrows and zones of diagenetic alteration/colored patches. Mudstones show different degrees of deformation spanning from occasional fractures to intervals of densely fractured scaly claystones of up to >10 cm thickness. Sparse faulting with low displacement (usually <2 cm) is seen in core and exhibits primarily normal and, rarely, reversed sense of slip. When present, ash was entrained along fractures and faults. On one occasion, a ~10 cm thick ash layer was found, which showed a fining-downward gradation into a mottled zone with clasts of the underlying silty claystones. In Hole C0010E, the footwall to the megasplay fault was recovered. Sediments are horizontally to gently dipping and mainly comprise silt of olive-gray color. The deposits of the underthrust sediment prism are less indurated than the hanging wall mudstones and show lamination on a centimeter scale. The material is less intensely deformed than the mudstones, and apart from occasional fracturation (some of it being drilling disturbance), evidence of structural features is absent. 
    more » « less
  4. Benthic organisms in coastal sediments affect elemental cycling and control benthic-pelagic coupling through particle reworking and ventilation of their burrows. Bioirrigation and associated porewater advection create intermittently oxic regions within sediments. The spatio-temporal patterns of such biogenic redox oscillations likely respond to seasonal factors, but quantitative information on the seasonality of bioirrigator behaviors and associated redox dynamics is scarce. We examined bioirrigation by the maldanid polychaete Clymenella torquata and its impacts on sediment oxygenation patterns in permeable sediments using high-resolution planar optode oxygen imaging. In sediment mesocosms with reconstructed summer-collected sediment, the durations of pumping and resting varied inversely with temperature. The average durations of pumping and resting increased from 4 min/4 min at 21 °C, to 6 min/6 min at 12 °C, to 15 min/14 min at 5 °C. In intact cores collected in summer, irrigation patterns (3.5 min/3.5 min) were similar to those observed at 21 °C during the temperature ramp. Pumping and resting durations in intact cores collected in winter at 6 °C averaged 9 min/26 min, significantly different from patterns at comparable temperatures in the temperature ramp. Pumping patterns strongly affected the temporal patterns of redox dynamics in surrounding sediments. In addition, temperature strongly affected burrow irrigation depth (exclusively within the top ∼10 cm at 21 °C, and down to ∼20 cm at 5–6 °C with an apparent transition at ∼15 °C), indicating that the zone with dynamic redox conditions migrates vertically on a seasonal basis. The differences in pumping patterns between in- and out-of-season experiments and the effect of temperature on irrigation depth underscore the importance of conducting experiments with bioturbators in-season and at field temperatures. The observed seasonal differences in bioirrigation patterns and associated spatio-temporal redox dynamics suggest that rates and pathways of redox-sensitive diagenetic processes and benthic chemical fluxes in permeable sediments likely show considerable seasonal variation. 
    more » « less
  5. Abstract

    Submarine landslides associated with the Cascadia subduction zone offshore of the Pacific northwest United States and Canada represent significant natural geohazards. Mapping past submarine landslide deposits is critical for understanding present and future slope failure and tsunami hazard potential. We focus on the portion of Cascadia offshore Oregon to map the occurrences of submarine landslide deposits (mass transport deposits [MTDs]) in the subsurface using recent high‐resolution reflection seismic data. We identified 133 MTDs and categorized them based on their present morphology inferred from their acoustic characteristics as disintegrative or blocky. Interestingly, nearly 76% of the MTDs are located in the northern Oregon margin and many of these are non‐cohesive disintegrative deposits. MTDs are less common in the southern Oregon margin, however, they were also much larger and more cohesive than those found in the north. The differences are not likely to be related to differences in earthquake intensity but rather sedimentation rates and basin structures. Specifically, the northern Oregon margin is proximal to the sediment‐delivery systems of the Columbia River and has landward verging fold‐and‐thrust structures, whereas the southern Oregon margin is relatively sediment starved and has seaward verging structures resulting in fewer steep ridges. Because of the higher sedimentation rates, the northern Oregon margin may be prone to more frequent and disintegrative types of slope failures. In contrast, the southern margin may have enhanced slope stability due to seismic strengthening and lower sedimentation rates. However, when slope failures do occur in the southern Oregon margin, they tend to be more cohesive and blocky. Therefore, even though there are fewer slope failures in the southern Oregon margin, there is still hazard potential because fast‐moving cohesive slope failures can generate tsunami.

     
    more » « less