Abstract Different proteases and peptidases are present within chloroplasts and nonphotosynthetic plastids to process precursor proteins and to degrade cleaved chloroplast transit peptides and damaged, misfolded, or otherwise unwanted proteins. Collectively, these proteases and peptidases form a proteolysis network, with complementary activities and hierarchies, and build-in redundancies. Furthermore, this network is distributed across the different intra-chloroplast compartments (lumen, thylakoid, stroma, envelope). The challenge is to determine the contributions of each peptidase (system) to this network in chloroplasts and nonphotosynthetic plastids. This will require an understanding of substrate recognition mechanisms, degrons, substrate, and product size limitations, as well as the capacity and degradation kinetics of each protease. Multiple extra-plastidial degradation pathways complement these intra-chloroplast proteases. This review summarizes our current understanding of these intra-chloroplast proteases in Arabidopsis and crop plants with an emphasis on considerations for building a qualitative and quantitative network view.
more »
« less
Sequence‐Selective Protection of Peptides from Proteolysis
Abstract Proteolysis of proteins and peptides is involved in the infection of cells by enveloped viruses and also in the invasion and spread of cancer cells. Shutting down broad‐specificity proteases, however, is problematic because normal functions by these proteases will be affected. Herein, nanoparticle receptors were prepared from molecular imprinting for complex biological peptides. Their strong and selective binding enabled them to protect their targeted sequences from proteolysis in aqueous solution at stoichiometric amounts. Generality of the method was demonstrated by the protection of hydrophobic and hydrophilic peptides from different proteases, selective protection of a segment of a long peptide, and selective protection of a targeted peptide in a mixture. Most interestingly, two receptors targeting different parts of a long peptide could work in cooperation to protect the overall sequence, highlighting the versatility of the method.
more »
« less
- Award ID(s):
- 2002659
- PAR ID:
- 10219391
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 60
- Issue:
- 20
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 11092-11097
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Since mitochondria contribute to tumorigenesis and drug resistance in cancer, mitochondrial genetic engineering promises a new direction for cancer therapy. Here, we report the use of the perimitochondrial enzymatic noncovalent synthesis (ENS) of peptides for delivering genes selectively into the mitochondria of cancer cells for mitochondrial genetic engineering. Specifically, the micelles of peptides bind to the voltage-dependent anion channel (VDAC) on mitochondria for the proteolysis by enterokinase (ENTK), generating perimitochondrial nanofibers in cancer cells. This process, facilitating selective delivery of nucleic acid or gene vectors into mitochondria of cancer cells, enables the mitochondrial transgene expression of CRISPR/Cas9, FUNDC1, p53, and fluorescent proteins. Mechanistic investigation indicates that the interaction of the peptide assemblies with the VDAC and mitochondrial membrane potential are necessary for mitochondria targeting. This local enzymatic control of intermolecular noncovalent interactions enables selective mitochondrial genetic engineering, thus providing a strategy for targeting cancer cells.more » « less
-
Abstract The proteasome, the primary protease for ubiquitin-dependent proteolysis in eukaryotes, is usually found as a mixture of 30S, 26S, and 20S complexes. These complexes have common catalytic sites, which makes it challenging to determine their distinctive roles in intracellular proteolysis. Here, we chemically synthesize a panel of homogenous ubiquitinated proteins, and use them to compare 20S and 26S proteasomes with respect to substrate selection and peptide-product generation. We show that 20S proteasomes can degrade the ubiquitin tag along with the conjugated substrate. Ubiquitin remnants on branched peptide products identified by LC-MS/MS, and flexibility in the 20S gate observed by cryo-EM, reflect the ability of the 20S proteasome to proteolyze an isopeptide-linked ubiquitin-conjugate. Peptidomics identifies proteasome-trapped ubiquitin-derived peptides and peptides of potential 20S substrates in Hi20S cells, hypoxic cells, and human failing-heart. Moreover, elevated levels of 20S proteasomes appear to contribute to cell survival under stress associated with damaged proteins.more » « less
-
From the first clinical trial by Dr. W.F. Anderson to the most recent US Food and Drug Administration–approved Luxturna (Spark Therapeutics, 2017) and Zolgensma (Novartis, 2019), gene therapy has revamped thinking and practice around cancer treatment and improved survival rates for adult and pediatric patients with genetic diseases. A major challenge to advancing gene therapies for a broader array of applications lies in safely delivering nucleic acids to their intended sites of action. Peptides offer unique potential to improve nucleic acid delivery based on their versatile and tunable interactions with biomolecules and cells. Cell-penetrating peptides and intracellular targeting peptides have received particular focus due to their promise for improving the delivery of gene therapies into cells. We highlight key examples of peptide-assisted, targeted gene delivery to cancer-specific signatures involved in tumor growth and subcellular organelle–targeting peptides, as well as emerging strategies to enhance peptide stability and bioavailability that will support long-term implementation.more » « less
-
Morel, Penelope Anne (Ed.)IntroductionT-cell receptors (TCRs) play a critical role in the immune response by recognizing specific ligand peptides presented by major histocompatibility complex (MHC) molecules. Accurate prediction of peptide binding to TCRs is essential for advancing immunotherapy, vaccine design, and understanding mechanisms of autoimmune disorders. MethodsThis study presents a theoretical approach that explores the impact of feature selection techniques on enhancing the predictive accuracy of peptide binding models tailored for specific TCRs. To evaluate our approach across different TCR systems, we utilized a dataset that includes peptide libraries tested against three distinct murine TCRs. A broad range of physicochemical properties, including amino acid composition, dipeptide composition, and tripeptide features, were integrated into the machine learning-based feature selection framework to identify key properties contributing to binding affinity. ResultsOur analysis reveals that leveraging optimized feature subsets not only simplifies the model complexity but also enhances predictive performance, enabling more precise identification of TCR peptide interactions. The results of our feature selection method are consistent with findings from hybrid approaches that utilize both sequence and structural data as input as well as experimental data. DiscussionOur theoretical approach highlights the role of feature selection in peptide-TCR interactions, providing a quantitative tool for uncovering the molecular mechanisms of the T-cell response and assisting in the design of more advanced targeted therapeutics.more » « less
An official website of the United States government
