This paper introduces a vision-based tactile sensor FingerVision, and explores its usefulness in tactile behaviors. FingerVision consists of a transparent elastic skin marked with dots, and a camera that is easy to fabricate, low cost, and physically robust. Unlike other vision-based tactile sensors, the complete transparency of the FingerVision skin provides multimodal sensation. The modalities sensed by FingerVision include distributions of force and slip, and object information such as distance, location, pose, size, shape, and texture. The slip detection is very sensitive since it is obtained by computer vision directly applied to the output from the FingerVision camera. It provides high-resolution slip detection, which does not depend on the contact force, i.e., it can sense slip of a lightweight object that generates negligible contact force. The tactile behaviors explored in this paper include manipulations that utilize this feature. For example, we demonstrate that grasp adaptation with FingerVision can grasp origami, and other deformable and fragile objects such as vegetables, fruits, and raw eggs.
Improving Tactile Codes for Increased Speech Communication Rates in a Phonemic-Based Tactile Display
More Like this
-
-
Tactile graphics are a common way to present information to people with vision impairments. Tactile graphics can be used to explore a broad range of static visual content but aren’t well suited to representing animation or interactivity. We introduce a new approach to creating dynamic tactile graphics that combines a touch screen tablet, static tactile overlays, and small mobile robots. We introduce a prototype system called RoboGraphics and several proof-of-concept applications. We evaluated our prototype with seven participants with varying levels of vision, comparing the RoboGraphics approach to a flat screen, audio-tactile interface. Our results show that dynamic tactile graphics can help visually impaired participants explore data quickly and accurately.