skip to main content


Title: A Review and Evaluation of Planetary Boundary Layer Parameterizations in Hurricane Weather Research and Forecasting Model Using Idealized Simulations and Observations
This paper reviews the evolution of planetary boundary layer (PBL) parameterization schemes that have been used in the operational version of the Hurricane Weather Research and Forecasting (HWRF) model since 2011. Idealized simulations are then used to evaluate the effects of different PBL schemes on hurricane structure and intensity. The original Global Forecast System (GFS) PBL scheme in the 2011 version of HWRF produces the weakest storm, while a modified GFS scheme using a wind-speed dependent parameterization of vertical eddy diffusivity (Km) produces the strongest storm. The subsequent version of the hybrid eddy diffusivity and mass flux scheme (EDMF) used in HWRF also produces a strong storm, similar to the version using the wind-speed dependent Km. Both the intensity change rate and maximum intensity of the simulated storms vary with different PBL schemes, mainly due to differences in the parameterization of Km. The smaller the Km in the PBL scheme, the faster a storm tends to intensify. Differences in hurricane PBL height, convergence, inflow angle, warm-core structure, distribution of deep convection, and agradient force in these simulations are also examined. Compared to dropsonde and Doppler radar composites, improvements in the kinematic structure are found in simulations using the wind-speed dependent Km and modified EDMF schemes relative to those with earlier versions of the PBL schemes in HWRF. However, the upper boundary layer in all simulations is much cooler and drier than that in dropsonde observations. This model deficiency needs to be considered and corrected in future model physics upgrades.  more » « less
Award ID(s):
1822238 1822128
NSF-PAR ID:
10219517
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Atmosphere
Volume:
11
Issue:
10
ISSN:
2073-4433
Page Range / eLocation ID:
1091
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The surface wind structure and vertical turbulent transport processes in the eyewall of hurricane Isabel (2003) are investigated using six large-eddy simulations (LESs) with different horizontal grid spacing and three-dimensional (3D) sub-grid scale (SGS) turbulent mixing models and a convection permitting simulation that uses a coarser grid spacing and one-dimensional vertical turbulent mixing scheme. The mean radius-height distribution of storm tangential wind and radial flow, vertical velocity structure, and turbulent kinetic energy and momentum fluxes in the boundary layer generated by LESs are consistent with those derived from historical dropsonde composites, Doppler radar, and aircraft measurements. Unlike the convection permitting simulation that produces storm wind fields lacking small-scale disturbances, all LESs are able to produce sub-kilometer and kilometer scale eddy circulations in the eyewall. The inter-LES differences generally reduce with the decrease of model grid spacing. At 100-m horizontal grid spacing, the vertical momentum fluxes induced by the model-resolved eddies and the associated eddy exchange coefficients in the eyewall simulated by the LESs with different 3D SGS mixing schemes are fairly consistent. Although with uncertainties, the decomposition in terms of eddy scales suggests that sub-kilometer eddies are mainly responsible for the vertical turbulent transport within the boundary layer (~1 km depth following the conventional definition) whereas eddies greater than 1 km become the dominant contributors to the vertical momentum transport above the boundary layer in the eyewall. The strong dependence of vertical turbulent transport on eddy scales suggests that the vertical turbulent mixing parameterization in mesoscale simulations of tropical cyclones is ultimately a scale-sensitive problem. 
    more » « less
  2. In tropical cyclones (TCs), the peak wind speed is typically found near the top of the boundary layer (approximately 0.5–1 km). Recently, it was shown that in a few observed TCs, the wind speed within the eyewall can increase with height within the midtroposphere, resulting in a secondary local maximum at 4–5 km. This study presents additional evidence of such an atypical structure, using dropsonde and Doppler radar observations from Hurricane Patricia (2015). Near peak intensity, Patricia exhibited an absolute wind speed maximum at 5–6-km height, along with a weaker boundary layer maximum. Idealized simulations and a diagnostic boundary layer model are used to investigate the dynamics that result in these atypical wind profiles, which only occur in TCs that are very intense (surface wind speed > 50 m s−1) and/or very small (radius of maximum winds < 20 km). The existence of multiple maxima in wind speed is a consequence of an inertial oscillation that is driven ultimately by surface friction. The vertical oscillation in the radial velocity results in a series of unbalanced tangential wind jets, whose magnitude and structure can manifest as a midlevel wind speed maximum. The wavelength of the inertial oscillation increases with vertical mixing length lin a turbulence parameterization, and no midlevel wind speed maximum occurs when lis large. Consistent with theory, the wavelength in the simulations scales with (2 K/ I)1/2, where K is the (vertical) turbulent diffusivity, and I2is the inertial stability. This scaling is used to explain why only small and/or strong TCs exhibit midlevel wind speed maxima.

     
    more » « less
  3. The Developmental Testbed Center (DTC) tested two convective parameterization schemes in the Hurricane Weather Research and Forecasting (HWRF) Model and compared them in terms of performance of forecasting tropical cyclones (TCs). Several TC forecasts were conducted with the scale-aware Simplified Arakawa Schubert (SAS) and Grell–Freitas (GF) convective schemes over the Atlantic basin. For this sample of over 100 cases, the storm track and intensity forecasts were superior for the GF scheme compared to SAS. A case study showed improved storm structure for GF when compared with radar observations. The GF run had increased inflow in the boundary layer, which resulted in higher angular momentum. An angular momentum budget analysis shows that the difference in the contribution of the eddy transport to the total angular momentum tendency is small between the two forecasts. The main difference is in the mean transport term, especially in the boundary layer. The temperature tendencies indicate higher contribution from the microphysics and cumulus heating above the boundary layer in the GF run. A temperature budget analysis indicated that both the temperature advection and diabatic heating were the dominant terms and they were larger near the storm center in the GF run than in the SAS run. The above results support the superior performance of the GF scheme for TC intensity forecast.

     
    more » « less
  4. Tropical cyclones are one of the deadliest natural disasters in the world that cause significant damage to the environment and infrastructure. The Hurricane Boundary Layer (HBL) plays a major role in hurricane dynamics and its intensification. Most of the existing vertical diffusion parameterizations in the current numerical weather prediction models rely on the Planetary Boundary Layer (PBL) schemes. Previous studies (Momen et al. 2021; Romdhani et al. 2022) showed that there is a significant distinction between turbulence characteristics in HBLs and regular atmospheric boundary layers (ABLs) due to the strong rotational effects of hurricane flows. Nevertheless, such differences are not considered in the current PBL schemes, and they are primarily designed and tested for regular ABLs. In this talk, we aim to bridge this knowledge gap by conducting real hurricane simulations using the Weather Research and Forecasting (WRF) model. We investigate the role of the PBL height and eddy momentum exchange coefficients in five intensifying hurricanes by probing the parameter space of the problem. Our simulations have shown that the most widely used WRF PBL schemes do not capture the hurricane intensification properly and underestimate their intensity. We will demonstrate how limiting the amount of the vertical transport of momentum greatly benefits the skill of forecasting in major hurricane simulations. We will also present how changing the height of the PBL significantly impacts the accuracy of the forecasts. By reducing the PBL height, simulated hurricanes become stronger and larger – representing the actual rapid intensification process much more accurately. Not only changes are seen in the predicted wind intensities, but also remarkable impacts are observed in storm size, the radius of maximum wind speed, hurricane track, and minimum sea level pressure. The results of this study provide insights into the role of vertical diffusion parameterizations in hurricane dynamics. Our findings can be used to improve the accuracy of real hurricane forecasts in numerical weather prediction models. 
    more » « less
  5. Abstract Subgrid-scale turbulence in numerical weather prediction models is typically handled by a PBL parameterization. These schemes attempt to represent turbulent mixing processes occurring below the resolvable scale of the model grid in the vertical direction, and they act upon temperature, moisture, and momentum within the boundary layer. This study varies the PBL mixing strength within 4-km WRF simulations of a 26–29 January 2015 snowstorm to assess the sensitivity of baroclinic cyclones to eddy diffusivity intensity. The bulk critical Richardson number for unstable regimes is varied between 0.0 and 0.25 within the YSU PBL scheme as a way of directly altering the depth and magnitude of subgrid-scale turbulent mixing. Results suggest that varying the bulk critical Richardson number is similar to selecting a different PBL parameterization. Differences in boundary layer moisture availability, arising from reduced entrainment of dry, free tropospheric air, lead to variations in the magnitude of latent heat release above the warm frontal region, producing stronger upper-tropospheric downstream ridging in simulations with less PBL mixing. The more amplified flow pattern impedes the northeastward propagation of the surface cyclone and results in a westward shift of precipitation. In addition, trajectory analysis indicates that ascending parcels in the less-mixing simulations condense more water vapor and terminate at a higher potential temperature level than do ascending parcels in the more-mixing simulations, suggesting stronger latent heat release when PBL mixing is reduced. These results suggest that spread within ensemble forecast systems may be improved by perturbing PBL mixing parameters that are not well constrained. 
    more » « less