Vertical eddy diffusivity (VED) in the planetary boundary layer (PBL) has a significant impact on forecasts of tropical cyclone (TC) structure and intensity. VED uncertainties in PBL parameterizations can be partly attributed to the model’s inability to represent roll vortices (RV). In this study, RV effects on turbulent fluxes derived from a large eddy simulation (LES) by Li et al. (Geophys. Res. Lett., 2021, 48, e2020GL090703) are added to the VED parameterization of the PBL scheme within the operational Hurricane Weather Research and Forecasting (HWRF) model. RV contribution to VED is parameterized through a coefficient and varies with the RV intensity and velocity scale. A modification over land has also been implemented. This modified VED parameterization is compared with the original wind-speed-dependent VED scheme in HWRF. Retrospective HWRF forecasts of Hurricanes Florence (2018) and Laura (2020) are analyzed to evaluate the impacts of the modified VED scheme on landfalling hurricane forecasts. Results show that the modified PBL scheme with the RV effect leads to an improvement in 10-m maximum wind speed forecasts of 14%–31%, with a neutral to positive improvement for track forecasts. Improved wind structure and precipitation forecasts against observations are also noted with the modified PBL scheme. Further diagnoses indicate that the revised PBL scheme enhances moist entropy in the boundary layer over land, leading to improved TC intensity prediction compared to the original scheme.
more » « less- PAR ID:
- 10535941
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Earth Science
- Volume:
- 11
- ISSN:
- 2296-6463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)This paper reviews the evolution of planetary boundary layer (PBL) parameterization schemes that have been used in the operational version of the Hurricane Weather Research and Forecasting (HWRF) model since 2011. Idealized simulations are then used to evaluate the effects of different PBL schemes on hurricane structure and intensity. The original Global Forecast System (GFS) PBL scheme in the 2011 version of HWRF produces the weakest storm, while a modified GFS scheme using a wind-speed dependent parameterization of vertical eddy diffusivity (Km) produces the strongest storm. The subsequent version of the hybrid eddy diffusivity and mass flux scheme (EDMF) used in HWRF also produces a strong storm, similar to the version using the wind-speed dependent Km. Both the intensity change rate and maximum intensity of the simulated storms vary with different PBL schemes, mainly due to differences in the parameterization of Km. The smaller the Km in the PBL scheme, the faster a storm tends to intensify. Differences in hurricane PBL height, convergence, inflow angle, warm-core structure, distribution of deep convection, and agradient force in these simulations are also examined. Compared to dropsonde and Doppler radar composites, improvements in the kinematic structure are found in simulations using the wind-speed dependent Km and modified EDMF schemes relative to those with earlier versions of the PBL schemes in HWRF. However, the upper boundary layer in all simulations is much cooler and drier than that in dropsonde observations. This model deficiency needs to be considered and corrected in future model physics upgrades.more » « less
-
Abstract. The fundamental mechanism underlying tropical cyclone (TC) intensification may be understood from the conservation of absolute angular momentum, where the primary circulation of a TC is driven by the torque acting on air parcels resulting from asymmetric eddy processes, including turbulence. While turbulence is commonly regarded as a flow feature pertaining to the planetary boundary layer (PBL), intense turbulent mixing generated by cloud processes also exists above the PBL in the eyewall and rainbands. Unlike the eddy forcing within the PBL that is negative definite, the sign of eyewall/rainband eddy forcing above the PBL is indefinite and thus provides a possible mechanism to spin up a TC vortex. In this study, we show that the Hurricane Weather Research & forecasting (HWRF) model, one of the operational models used for TC prediction, is unable to generate appropriate sub-grid-scale (SGS) eddy forcing above the PBL due to lack of consideration of intense turbulent mixing generated by the eyewall and rainband clouds. Incorporating an in-cloud turbulent mixing parameterization in the PBL scheme notably improves HWRF's skills on predicting rapid changes in intensity for several past major hurricanes. While the analyses show that the SGS eddy forcing above the PBL is only about one-fifth of the model-resolved eddy forcing, the simulated TC vortex inner-core structure and the associated model-resolved eddy forcing exhibit a substantial dependence on the parameterized SGS eddy processes. The results highlight the importance of eyewall/rainband SGS eddy forcing to numerical prediction of TC intensification, including rapid intensification at the current resolution of operational models.
-
The Developmental Testbed Center (DTC) tested two convective parameterization schemes in the Hurricane Weather Research and Forecasting (HWRF) Model and compared them in terms of performance of forecasting tropical cyclones (TCs). Several TC forecasts were conducted with the scale-aware Simplified Arakawa Schubert (SAS) and Grell–Freitas (GF) convective schemes over the Atlantic basin. For this sample of over 100 cases, the storm track and intensity forecasts were superior for the GF scheme compared to SAS. A case study showed improved storm structure for GF when compared with radar observations. The GF run had increased inflow in the boundary layer, which resulted in higher angular momentum. An angular momentum budget analysis shows that the difference in the contribution of the eddy transport to the total angular momentum tendency is small between the two forecasts. The main difference is in the mean transport term, especially in the boundary layer. The temperature tendencies indicate higher contribution from the microphysics and cumulus heating above the boundary layer in the GF run. A temperature budget analysis indicated that both the temperature advection and diabatic heating were the dominant terms and they were larger near the storm center in the GF run than in the SAS run. The above results support the superior performance of the GF scheme for TC intensity forecast.
-
Rotation in hurricane flows can highly affect the dynamics and structure of hurricane boundary layers (HBLs). Recent studies (Momen et al. 2021) showed that there is a significant distinction between turbulence characteristics in hurricane and regular atmospheric boundary layers due to the strong rotational effects of hurricane flows. Despite these unique features of HBLs, the current planetary boundary layer (PBL) and turbulence schemes in numerical weather prediction (NWP) models are neither specifically designed nor comprehensively tested for major hurricane flows. In this talk, we will address this knowledge gap by characterizing the role of horizontal and vertical eddy diffusion under different PBL schemes in simulated hurricane intensity, size, and track. To this end, the results of multiple simulated hurricane cases will be presented using the Weather Research and Forecasting (WRF) model. The impacts of changing the grid resolution, horizontal turbulence, PBL scheme, vertical eddy diffusivity, and PBL height on hurricane dynamics and accuracy will be characterized. The results indicate that the current turbulence and PBL schemes in WRF are overly diffusive for simulating major hurricanes (Romdhani et al. 2022; Li et al. 2023) primarily since they do not account for turbulence suppression effects in rotating hurricane flows. We will also show new suites of simulations in which the default horizontal and vertical diffusion in WRF are modulated to determine the impacts of eddy diffusion changes on hurricane dynamics. The results indicate that reducing the default vertical diffusion depth and magnitude led to ~38% and ~24% improvements, on average, in hurricane intensity forecasts compared to the default models in the considered cases (Matak and Momen 2023). Moreover, by decreasing the default horizontal mixing length, we managed to decrease the intensity errors on average between ~8-23% in the WRF’s default models for both low and high resolutions. Figure A displays an example of the simulations in which our new adjustment of the vertical diffusion (reduced diffusion, blue line) agrees better with the observed data (black line) compared to the default WRF results (gray line). The figure also depicts wind speed contours that how this change in vertical diffusion can remarkably influence the structure, size, and intensity of hurricane simulations. The results of this study provide notable insights into the role of turbulent fluxes in simulated hurricanes that can be useful to advance the turbulence and PBL parameterizations of NWP models for accurate tropical cyclone forecasts. References: Li M, Zhang JA, Matak L, Momen M (2023) The impacts of adjusting momentum roughness length on strong and weak hurricanes forecasts: a comprehensive analysis of weather simulations and observations. Mon Weather Rev. https://doi.org/10.1175/MWR-D-22-0191.1 Matak L, Momen M (2023) The role of vertical diffusion parameterizations in the dynamics and accuracy of simulated intensifying hurricanes . Boundary Layer Meteorology. https://doi.org/10.1007/s10546-023-00818-w Momen M, Parlange MB, Giometto MG (2021) Scrambling and reorientation of classical boundary layer turbulence in hurricane winds. Geophys Res Lett 48:.https://doi.org/10.1029/2020GL091695 Romdhani O, Zhang JA, Momen M (2022) Characterizing the impacts of turbulence closures on real hurricane forecasts: A comprehensive joint assessment of grid resolution, horizontal turbulence models, and horizontal mixing length. J Adv Model Earth Syst. https://doi.org/10.1029/2021MS002796more » « less
-
This talk presents results from the authors’ recent work on evaluating the role of turbulence and boundary-layer parameterizations on hurricane intensification. We show that observation-based modification of these physical parameterizations significantly improved the HWRF intensity forecast. Turbulent mixing in both the vertical and horizontal directions are found to be crucial for hurricane spin-up dynamics in 3D numerical simulations and HWRF forecasts. Vertical turbulent mixing regulates the inflow strength and the location of boundary-layer convergence that in turns regulates the distribution of deep convection and the intensification of the whole hurricane vortex. Convergence of angular momentum in the boundary layer that is a key component of the hurricane spin-up theory is also found to be regulated by vertical turbulent mixing in connection to the boundary layer inflow. Horizontal turbulent mixing, on the other hand, mainly influences the eddy momentum flux inside the radius of the maximum wind speed in the angular momentum budget. The effect of horizontal turbulent mixing on the convergence of angular momentum is on smoothing the radial gradient of the angular momentum when the horizontal mixing length is large. In a sheared storm, both the vertical and horizontal turbulent mixing affect vortex and shear interaction in terms of the evolution of vortex tilt and boundary-layer recovery processes.more » « less