- Award ID(s):
- 1918839
- PAR ID:
- 10219628
- Date Published:
- Journal Name:
- Proceedings of the 37th International Conference on Machine Learning
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Optimizing molecules for desired properties is a fundamental yet challenging task in chemistry, material science, and drug discovery. This paper develops a novel algorithm for optimizing molecular properties via an Expectation- Maximization (EM) like explainable evolutionary process. The algorithm is designed to mimic human experts in the process of searching for desirable molecules and alternate between two stages: the first stage on explainable local search which identifies rationales, i.e., critical subgraph patterns accounting for desired molecular properties, and the second stage on molecule completion which explores the larger space of molecules containing good rationales. We test our approach against various baselines on a real-world multi-property optimization task where each method is given the same number of queries to the property oracle. We show that our evolution-by-explanation algorithm is 79% better than the best baseline in terms of a generic metric combining aspects such as success rate, novelty, and diversity. Human expert evaluation on optimized molecules shows that 60% of top molecules obtained from our methods are deemed successful.more » « less
-
Generation of molecules with desired chemical and biological properties such as high drug-likeness, high binding affinity to target proteins, is critical for drug discovery. In this paper, we propose a probabilistic generative model to capture the joint distribution of molecules and their properties. Our model assumes an energy-based model (EBM) in the latent space. Conditional on the latent vector, the molecule and its properties are modeled by a molecule generation model and a property regression model respectively. To search for molecules with desired properties, we propose a sampling with gradual distribution shifting (SGDS) algorithm, so that after learning the model initially on the training data of existing molecules and their properties, the proposed algorithm gradually shifts the model distribution towards the region supported by molecules with desired values of properties. Our experiments show that our method achieves very strong performances on various molecule design tasks.more » « less
-
Inverse molecular generation is an essential task for drug discovery, and generative models offer a very promising avenue, especially when diffusion models are used. Despite their great success, existing methods are inherently limited by the lack of a semantic latent space that can not be navigated and perform targeted exploration to generate molecules with desired properties. Here, we present a property-guided diffusion model for generating desired molecules, which incorporates a sophisticated diffusion process capturing intricate interactions of nodes and edges within molecular graphs and leverages a time-dependent molecular property classifier to integrate desired properties into the diffusion sampling process. Furthermore, we extend our model to a multi-property-guided paradigm. Experimental results underscore the competitiveness of our approach in molecular generation, highlighting its superiority in generating desired molecules without the need for additional optimization steps.more » « less
-
Generating new molecules with specified chemical and biological properties via generative models has emerged as a promising direction for drug discovery. However, existing methods require extensive training/fine-tuning with a large dataset, often unavailable in real-world generation tasks. In this work, we propose a new retrieval-based framework for controllable molecule generation. We use a small set of exemplar molecules, i.e., those that (partially) satisfy the design criteria, to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria. We design a retrieval mechanism that retrieves and fuses the exemplar molecules with the input molecule, which is trained by a new self-supervised objective that predicts the nearest neighbor of the input molecule. We also propose an iterative refinement process to dynamically update the generated molecules and retrieval database for better generalization. Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning. On various tasks ranging from simple design criteria to a challenging real-world scenario for designing lead compounds that bind to the SARS-CoV-2 main protease, we demonstrate our approach extrapolates well beyond the retrieval database, and achieves better performance and wider applicability than previous methods.more » « less
-
Abstract Generative models are a sub-class of machine learning models that are capable of generating new samples with a target set of properties. In chemical and materials applications, these new samples might be drug targets, novel semiconductors, or catalysts constrained to exhibit an application-specific set of properties. Given their potential to yield high-value targets from otherwise intractable design spaces, generative models are currently under intense study with respect to how predictions can be improved through changes in model architecture and data representation. Here we explore the potential of multi-task transfer learning as a complementary approach to improving the validity and property specificity of molecules generated by such models. We have compared baseline generative models trained on a single property prediction task against models trained on additional ancillary prediction tasks and observe a generic positive impact on the validity and specificity of the multi-task models. In particular, we observe that the validity of generated structures is strongly affected by whether or not the models have chemical property data, as opposed to only syntactic structural data, supplied during learning. We demonstrate this effect in both interpolative and extrapolative scenarios (i.e., where the generative targets are poorly represented in training data) for models trained to generate high energy structures and models trained to generated structures with targeted bandgaps within certain ranges. In both instances, the inclusion of additional chemical property data improves the ability of models to generate valid, unique structures with increased property specificity. This approach requires only minor alterations to existing generative models, in many cases leveraging prediction frameworks already native to these models. Additionally, the transfer learning strategy is complementary to ongoing efforts to improve model architectures and data representation and can foreseeably be stacked on top of these developments.