skip to main content


This content will become publicly available on August 1, 2024

Title: Molecule design by latent space energy-based modeling and gradual distribution shifting
Generation of molecules with desired chemical and biological properties such as high drug-likeness, high binding affinity to target proteins, is critical for drug discovery. In this paper, we propose a probabilistic generative model to capture the joint distribution of molecules and their properties. Our model assumes an energy-based model (EBM) in the latent space. Conditional on the latent vector, the molecule and its properties are modeled by a molecule generation model and a property regression model respectively. To search for molecules with desired properties, we propose a sampling with gradual distribution shifting (SGDS) algorithm, so that after learning the model initially on the training data of existing molecules and their properties, the proposed algorithm gradually shifts the model distribution towards the region supported by molecules with desired values of properties. Our experiments show that our method achieves very strong performances on various molecule design tasks.  more » « less
Award ID(s):
2015577
NSF-PAR ID:
10469436
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Uncertainty in Artificial Intelligence (UAI, 2023)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph neural networks (GNNs) have been used extensively for addressing problems in drug design and discovery. Both ligand and target molecules are represented as graphs with node and edge features encoding information about atomic elements and bonds respectively. Although existing deep learning models perform remarkably well at predicting physicochemical properties and binding affinities, the generation of new molecules with optimized properties remains challenging. Inherently, most GNNs perform poorly in whole-graph representation due to the limitations of the message-passing paradigm. Furthermore, step-by-step graph generation frameworks that use reinforcement learning or other sequential processing can be slow and result in a high proportion of invalid molecules with substantial post-processing needed in order to satisfy the principles of stoichiometry. To address these issues, we propose a representation-first approach to molecular graph generation. We guide the latent representation of an autoencoder by capturing graph structure information with the geometric scattering transform and apply penalties that structure the representation also by molecular properties. We show that this highly structured latent space can be directly used for molecular graph generation by the use of a GAN. We demonstrate that our architecture learns meaningful representations of drug datasets and provides a platform for goal-directed drug synthesis. 
    more » « less
  2. Generating new molecules with specified chemical and biological properties via generative models has emerged as a promising direction for drug discovery. However, existing methods require extensive training/fine-tuning with a large dataset, often unavailable in real-world generation tasks. In this work, we propose a new retrieval-based framework for controllable molecule generation. We use a small set of exemplar molecules, i.e., those that (partially) satisfy the design criteria, to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria. We design a retrieval mechanism that retrieves and fuses the exemplar molecules with the input molecule, which is trained by a new self-supervised objective that predicts the nearest neighbor of the input molecule. We also propose an iterative refinement process to dynamically update the generated molecules and retrieval database for better generalization. Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning. On various tasks ranging from simple design criteria to a challenging real-world scenario for designing lead compounds that bind to the SARS-CoV-2 main protease, we demonstrate our approach extrapolates well beyond the retrieval database, and achieves better performance and wider applicability than previous methods. 
    more » « less
  3. Optimizing molecules for desired properties is a fundamental yet challenging task in chemistry, material science, and drug discovery. This paper develops a novel algorithm for optimizing molecular properties via an Expectation- Maximization (EM) like explainable evolutionary process. The algorithm is designed to mimic human experts in the process of searching for desirable molecules and alternate between two stages: the first stage on explainable local search which identifies rationales, i.e., critical subgraph patterns accounting for desired molecular properties, and the second stage on molecule completion which explores the larger space of molecules containing good rationales. We test our approach against various baselines on a real-world multi-property optimization task where each method is given the same number of queries to the property oracle. We show that our evolution-by-explanation algorithm is 79% better than the best baseline in terms of a generic metric combining aspects such as success rate, novelty, and diversity. Human expert evaluation on optimized molecules shows that 60% of top molecules obtained from our methods are deemed successful. 
    more » « less
  4. De Novo design of molecules with targeted properties represents a new frontier in molecule development. Despite enormous progress, two main challenges remain, i.e., (i) generation of novel molecules with targeted and quantifiable properties; (ii) generated molecules having property values beyond the range in the training dataset. To tackle these challenges, we propose a novel reinforced regressional and conditional generative adversarial network (RRCGAN) to generate chemically valid, drug-like molecules with targeted heat capacity (Cv) values as a proof-of-concept study. As validated by DFT, ~80% of the generated samples have a relative error (RE) of < 20% of the targeted Cv values. To bias the generation of molecules with the Cv values beyond the range of the original training molecules, transfer learning was applied to iteratively retrain the RRCGAN model. After only two iterations of transfer learning, the mean Cv of the generated molecules increases to 44.0 cal/(mol·K) from the mean value of 31.6 cal/(mol·K) shown in the initial training dataset. This demonstrated computation methodology paves a new avenue to discovering drug-like molecules with biased properties, which can be straightforwardly repurposed for optimizing individual or multi-objective properties of various matters. 
    more » « less
  5. Designing molecules with specific structural and functional properties (e.g., drug-likeness and water solubility) is central to advancing drug discovery and material science, but it poses outstanding challenges both in wet and dry laboratories. The search space is vast and rugged. Recent advances in deep generative models are motivating new computational approaches building over deep learning to tackle the molecular space. Despite rapid advancements, state-of-the-art deep generative models for molecule generation have many limitations, including lack of interpretability. In this paper we address this limitation by proposing a generic framework for interpretable molecule generation based on novel disentangled deep graph generative models with property control. Specifically, we propose a disentanglement enhancement strategy for graphs. We also propose new deep neural architecture to achieve the above learning objective for inference and generation for variable-size graphs efficiently. Extensive experimental evaluation demonstrates the superiority of our approach in various critical aspects, such as accuracy, novelty, and disentanglement. 
    more » « less