skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effect of nanorod position on the plasmonic properties of the complex nanorod in nanohole arrays
Award ID(s):
1808271
PAR ID:
10219681
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Volume:
54
Issue:
15
ISSN:
0022-3727
Page Range / eLocation ID:
155201
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Integrating multiple materials in arbitrary arrangements within nanoparticles is a prerequisite for advancing many applications. Strategies to synthesize heterostructured nanoparticles are emerging, but they are limited in complexity, scope, and scalability. We introduce two design guidelines, based on interfacial reactivity and crystal structure relations, that enable the rational synthesis of a heterostructured nanorod megalibrary. We define synthetically feasible pathways to 65,520 distinct multicomponent metal sulfide nanorods having as many as 6 materials, 8 segments, and 11 internal interfaces by applying up to seven sequential cation-exchange reactions to copper sulfide nanorod precursors. We experimentally observe 113 individual heterostructured nanorods and demonstrate the scalable production of three samples. Previously unimaginable complexity in heterostructured nanorods is now routinely achievable with simple benchtop chemistry and standard laboratory glassware. 
    more » « less
  2. This study shows that a hybridized plasmonic mode, represented by an additional transmission peak, in a compound structure consisting of a nanorod embedded in a nanohole can be effectively described as a quasi-dipole oscillator. When two nanorods are introduced into a nanohole, these two quasi-dipoles can couple and hybridize, giving rise to two additional transmission peaks in the enhanced optical transmission spectrum. The relative intensities of these peaks can be con-trolled by adjusting the incident polarization, while their separations can be tuned by modifying the length of the nanorods. The concept of quasi-dipoles in compound nanohole structures can be further extended to predict the coupling behavior of even more complex compound configura-tions, such as multiple nanorods within nanoholes, resulting in the generation of multiple hy-bridization states. Consequently, the shape and response of the transmission peaks can be pre-cisely engineered. This strategy could be used to design nanohole-based metasurfaces for applica-tions such as ultra-thin optical filters, waveplates, polarizers, etc. 
    more » « less