Abstract Electrocatalytic proton reduction to form dihydrogen (H2) is an effective way to store energy in the form of chemical bonds. In this study, we validate the applicability of a main‐group‐element‐based tin porphyrin complex as an effective molecular electrocatalyst for proton reduction. A PEGylated Sn porphyrin complex (SnPEGP) displayed high activity (−4.6 mA cm−2at −1.7 V vs. Fc/Fc+) and high selectivity (H2Faradaic efficiency of 94 % at −1.7 V vs. Fc/Fc+) in acetonitrile (MeCN) with trifluoroacetic acid (TFA) as the proton source. The maximum turnover frequency (TOFmax) for H2production was obtained as 1099 s−1. Spectroelectrochemical analysis, in conjunction with quantum chemical calculations, suggest that proton reduction occurs via an electron‐chemical‐electron‐chemical (ECEC) pathway. This study reveals that the tin porphyrin catalyst serves as a novel platform for investigating molecular electrocatalytic reactions and provides new mechanistic insights into proton reduction.
more »
« less
Physical properties of porphyrin-based crystalline metal‒organic frameworks
Abstract Metal‒organic frameworks (MOFs) are widely studied molecular assemblies that have demonstrated promise for a range of potential applications. Given the unique and well-established photophysical and electrochemical properties of porphyrins, porphyrin-based MOFs are emerging as promising candidates for energy harvesting and conversion applications. Here we discuss the physical properties of porphyrin-based MOFs, highlighting the evolution of various optical and electronic features as a function of their modular framework structures and compositional variations.
more »
« less
- Award ID(s):
- 1944903
- PAR ID:
- 10219736
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Chemistry
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2399-3669
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Metal–organic frameworks (MOFs) have played a crucial role in recent advancements in developing lithium‐based battery electrolytes, electrodes, and separators. Although many MOF‐based battery components rely on their well‐defined porosity and controllable functionality, they also boast a myriad of other significant properties relevant to battery applications. In this mini‐review, the distinct advantages of MOFs in battery applications are discussed, including using MOFs to 1) scavenge impurities to increase cycling stability, 2) widen the operation temperature range of conventional electrolytes, 3) widen the operation voltage range of common electrolytes, and 4) employ as artificial solid‐electrolyte interphases to prevent lithium dendrite growth. Furthermore, subsisting challenges of developing these emerging MOF‐based battery technologies are discussed and guidance for shaping the future of this field is given.more » « less
-
Abstract The field of sustainable heterogeneous catalysis is evolving rapidly, with a strong emphasis on developing catalysts that enhance efficiency. Among various heterogeneous photocatalysts, metal‐organic frameworks (MOFs) have gained significant attention for their exceptional performance in photocatalytic reactions. In this context, contrary to the conventional homogeneous iridium or ruthenium‐based photocatalysts, which face significant challenges in terms of availability, cost, scalability, and recyclability, a new Ba/Ti MOF (ACM‐4) is developed as a heterogeneous catalyst that can mimic/outperform the conventional photocatalysts, offering a more sustainable solution for efficient chemical processes. Its redox potential and triplet energy are comparable to or higher than the conventional catalysts, organic dyes, and metal semiconductors, enabling its use in both electron transfer and energy transfer applications. It facilitates a broad range of coupling reactions involving pharmaceuticals, agrochemicals, and natural products, and is compatible with various transition metals such as nickel, copper, cobalt, and palladium as co‐catalysts. The effectiveness of theACM‐4as a photocatalyst is supported by comprehensive material studies, photophysical, and recycling experiments. These significant findings underscore the potential ofACM‐4as a highly versatile and cost‐effective photoredox catalyst, providing a sustainable, one‐material solution for efficient chemical processes.more » « less
-
Abstract Metal–organic frameworks (MOFs) are highly porous and versatile materials studied extensively for applications such as carbon capture and water harvesting. However, computing phonon-mediated properties in MOFs, like thermal expansion and mechanical stability, remains challenging due to the large number of atoms per unit cell, making traditional Density Functional Theory (DFT) methods impractical for high-throughput screening. Recent advances in machine learning potentials have led to foundation atomistic models, such as MACE-MP-0, that accurately predict equilibrium structures but struggle with phonon properties of MOFs. In this work, we developed a workflow for computing phonons in MOFs within the quasi-harmonic approximation with a fine-tuned MACE model, MACE-MP-MOF0. The model was trained on a curated dataset of 127 representative and diverse MOFs. The fine-tuned MACE-MP-MOF0 improves the accuracy of phonon density of states and corrects the imaginary phonon modes of MACE-MP-0, enabling high-throughput phonon calculations with state-of-the-art precision. The model successfully predicts thermal expansion and bulk moduli in agreement with DFT and experimental data for several well-known MOFs. These results highlight the potential of MACE-MP-MOF0 in guiding MOF design for applications in energy storage and thermoelectrics.more » « less
-
To address the critical issues in solar energy, the current research has focused on developing advanced solar harvesting materials that are low cost, lightweight, and environmentally friendly. Among many organic photovoltaics (PVs), the porphyrin compounds exhibit unique structural features that are responsible for strong ultraviolet (UV) and near infrared absorptions and high average visible transmittance, making them ideal candidates for solar-based energy applications. The porphyrin compounds have also been found to exhibit strong photothermal (PT) effects and recently applied for optical thermal insulation of building skins. These structural and optical properties of the porphyrin compounds enable them to function as a PT or a PV device upon sufficient solar harvesting. It is possible to develop a transparent porphyrin thin film with PT- and PV-dual-modality for converting sunlight to either electricity or thermal energy, which can be altered depending on energy consumption needs. A building skin can be engineered into an active device with the PT- and PV-dual modality for large-scale energy harvesting, saving, and generation. This review provides the current experimental results on the PT and PV properties of the porphyrin compounds such as chlorophyll and chlorophyllin. Their PT and PV mechanisms are discussed in correlations to their electronic structures. Also discussed are the synthesis routes, thin film deposition, and potential energy applications of the porphyrin compounds.more » « less
An official website of the United States government
