skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Metal–Organic Frameworks for the Enhancement of Lithium‐Based Batteries: A Mini Review on Emerging Functional Designs
Abstract

Metal–organic frameworks (MOFs) have played a crucial role in recent advancements in developing lithium‐based battery electrolytes, electrodes, and separators. Although many MOF‐based battery components rely on their well‐defined porosity and controllable functionality, they also boast a myriad of other significant properties relevant to battery applications. In this mini‐review, the distinct advantages of MOFs in battery applications are discussed, including using MOFs to 1) scavenge impurities to increase cycling stability, 2) widen the operation temperature range of conventional electrolytes, 3) widen the operation voltage range of common electrolytes, and 4) employ as artificial solid‐electrolyte interphases to prevent lithium dendrite growth. Furthermore, subsisting challenges of developing these emerging MOF‐based battery technologies are discussed and guidance for shaping the future of this field is given.

 
more » « less
Award ID(s):
2011924
PAR ID:
10473576
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
11
Issue:
2
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Solid‐state electrolytes are the key to the development of lithium‐based batteries with dramatically improved energy density and safety. Inspired by ionic channels in biological systems, a novel class of pseudo solid‐state electrolytes with biomimetic ionic channels is reported herein. This is achieved by complexing the anions of an electrolyte to the open metal sites of metal–organic frameworks (MOFs), which transforms the MOF scaffolds into ionic‐channel analogs with lithium‐ion conduction and low activation energy. This work suggests the emergence of a new class of pseudo solid‐state lithium‐ion conducting electrolytes.

     
    more » « less
  2. Abstract

    Solid‐state electrolyte materials are attractive options for meeting the safety and performance needs of advanced lithium‐based rechargeable battery technologies because of their improved mechanical and thermal stability compared to liquid electrolytes. However, there is typically a tradeoff between mechanical and electrochemical performance. Here an elastic Li‐ion conductor with dual covalent and dynamic hydrogen bonding crosslinks is described to provide high mechanical resilience without sacrificing the room‐temperature ionic conductivity. A solid‐state lithium‐metal/LiFePO4cell with this resilient electrolyte can operate at room temperature with a high cathode capacity of 152 mAh g−1for 300 cycles and can maintain operation even after being subjected to intense mechanical impact testing. This new dual crosslinking design provides robust mechanical properties while maintaining ionic conductivity similar to state‐of‐the‐art polymer‐based electrolytes. This approach opens a route toward stable, high‐performance operation of solid‐state batteries even under extreme abuse.

     
    more » « less
  3. Despite great promise as next-generation high-capacity energy storage devices, lithium–sulfur batteries still face technical challenges in long-term cyclability. With their porous structures and facile synthesis, metal–organic frameworks (MOFs) are tunable platforms for understanding polysulfide redox and can serve as effective sulfur hosts for lithium–sulfur batteries. This feature article describes our design strategies to tailor MOF properties such as polysulfide affinity, ionic conductivity, and porosity for promoting active material utilization and charge transport efficiency. We also present engineering approaches for implementing MOF-based sulfur cathodes for lithium–sulfur batteries with high volumetric density and under low temperature operation. Our studies provide fundamental insights into sulfur–host interactions and polysulfide electrochemistry in the presence of porous matrices, inspiring future designs of advanced batteries. 
    more » « less
  4. Abstract

    Confining molecules in the nanoscale environment can lead to dramatic changes of their physical and chemical properties, which opens possibilities for new applications. There is a growing interest in liquefied gas electrolytes for electrochemical devices operating at low temperatures due to their low melting point. However, their high vapor pressure still poses potential safety concerns for practical usages. Herein, we report facile capillary condensation of gas electrolyte by strong confinement in sub-nanometer pores of metal-organic framework (MOF). By designing MOF-polymer membranes (MPMs) that present dense and continuous micropore (~0.8 nm) networks, we show significant uptake of hydrofluorocarbon molecules in MOF pores at pressure lower than the bulk counterpart. This unique property enables lithium/fluorinated graphite batteries with MPM-based electrolytes to deliver a significantly higher capacity than those with commercial separator membranes (~500 mAh g−1vs. <0.03 mAh g−1) at −40 °C under reduced pressure of the electrolyte.

     
    more » « less
  5. Abstract

    Solid polymer electrolytes (SPEs) are desirable in lithium metal batteries (LMBs) since they are nonflammable and show excellent lithium dendrite growth resistance. However, fabricating high performance polymer LMBs is still a grand challenge because of the complex battery system. In this work, a series of tailor‐designed hybrid SPEs are used to prepare LMBs with a LiFePO4‐based cathode. High performance LMBs with both excellent rate capability and long cycle life are obtained at 60 and 90 °C. The well‐controlled network structure in this series of hybrid SPEs offers a model system to study the relationship between the SPE properties and the LMB performance. It is shown that the cycle life of the polymer LMBs is closely correlated with the SPE–Li interface ionic conductivity, underscoring the importance of the solid electrolyte interface in LMB operation. LMB performance is further correlated with the molecular network structure. It is anticipated that results from this study will shed light on designing SPEs for high performance LMB applications.

     
    more » « less